General Consensus Protocols *

4 M - 7

Takayuki Tachikawa, Chiaki Yahata, and Makoto Takizawa † Tokyo Denki University ! e-mail{tachi,chii,taki}@takilab.k.dendai.ac.jp

1 Introduction

The distributed applications like groupware are realized by a group of multiple processes. The processes in the group have to make consensus in order to do the cooperation among them. There are kinds of consensus protocols [2, 3]. In the atomic commitment [1], each process cannot change the mind after notifying other processes of the vote. However, in the human society, individuals often change the minds even after notifying others of the votes. In addition to the atomic commitment, various kinds of decision logics have to be adopted. When considering the cooperation of multiple processes, we have to think about what process coordinates the cooperation among the processes. We have to consider the distributed control where there is no centralized controller. In this paper, we discuss a general consensus protocol [5].

In section 2, we present a general model of consensus protocol. In section 3, we discuss the ordered relation on the values taken by the processes. In section 4 and 5, the global decision and coordination schemes are discussed. In section 6, we would like to discuss extended 2PC protocol based on the general model.

General Consensus Model

A distributed system is composed of multiple processors interconnected by communication networks. A distributed application is realized by the cooperation of $n \ (> 0)$ processes p_1, \ldots, p_n , where each p_i is computed in one processor. In the distributed applications, p_1, \ldots, p_n have to make consensus among themselves. The commitment protocols [1] are used as the consensus ones where the following points are assumed:

- 1 no process can change the opinion after voting,
- 2 the decision logic is all-or-nothing principle,
- 3 there is one centralized controller,
- 4 process is not autonomous, i.e. it obeys the decision of the coordinator, and
- 5 No dominates Yes, i.e. processes voting No abort unilaterally without waiting for the decision from the coordinator.

The general consensus protocol has to take into account the following points:

- 1 each process can change the opinion,
- 2 each process can express the opinion No-idea and Anyone - OK in addition to Yes and No.
- 3 various kinds of decision logics like all-or-nothing and majority-consensus can be adopted,
- 4 each process may be autonomous, and
- 5 there are kinds of coordination among the processes, i.e, centralized or distributed scheme.

[General consensus protocol]

- 1 Each p_i expresses the opinion. p_i notifies all the processes of its opinion pv, which is named prevote of pi. This step is pre-voting.
- 2 p_i receives pv_1, \ldots, pv_n from p_1, \ldots, p_n . p_i makes a local decision based on pv_1, \ldots, pv_n . p_i expresses the opinion pv_i obtained by the local decision. Formally, p_i obtains the vote $v_i =$ $V_i(pv_1, \ldots, pv_n)$. This step is voting.

3 For the votes v_1, \ldots, v_n , a global decision v = $GD(v_1, \ldots, v_n)$ is obtained. This step is global decision.

4 p_i obtains v. Based on v and v_1, \dots, v_n, p_i makes the final local decision and obtains $d_i = LD_i(v_1,$ \ldots, v_n, v). This step is final local decision. \square

Let D be a set $\{d_1, \cdots, d_m, \bot, \top\}$ of values. d_1, \cdots, d_m are proper values. \bot means that it is not decided which one from d_1, \dots, d_m is taken. \top means that any of d_1, \dots, d_m is allowed.

Dominant Relation on Values

A local state of each process p_i is given as a tuple $\langle pv_i, v_i, d_i \rangle$ where pv_i is the pre-vote, v_i is the vote, and d_i is the value finally decided by p_i . p_i changes the local state on receipt of messages. For every state $\langle a, b, c \rangle$, $b = c = \bot$ if $a = \bot$, and $c = \bot$ if $b = \bot$. A state (a, b, c) is transitable if $b = \bot$ or $c = \bot$. [Definition] For a, b, and $c \in D$, if (a, b, \bot) is transitable to (a, b, c), c is dominates b if $b \neq c$ (written as

 $b \prec c$). \square

 $a \prec b$ means that p_i can change the pre-vote or vote from a to b. $a \equiv b$ means that neither a > b nor a < b. $a \succeq b$ means that $a \succ b$ or $a \equiv b$. (0,0,0) means that a process voting 0 aborts. $(1,1,\perp)$ means that the process votes 1. $\langle 1, 1, \bot \rangle$ is transited to $\langle 1, 1, 1 \rangle$ if the process commits, $\langle 1, 1, 0 \rangle$ if the process aborts. Thus, D is partially ordered on \prec . Since \top can be

changed to any value in D, T a bottom of D, i.e. for every d in D, $\top \prec d$. A proper value d in D is minimal in D iff there is no proper value d_k in D such that $d_k \prec d$. If D has only one minimal value d, minimum. p_i can vote the minimum d instead of voting T.

[Definition] A value d in D is maximal in D iff there is no value d_k in D such that $d \prec d_k$. \square

If there is only one maximal value d in D, d is the topof D. If p_i votes the maximal value d, p_i never changes the mind because d cannot be changed to any value. For every pair of d_k and d_h in D, $d_k \cup d_h$ denotes the least upper bound (lub) of d_k and d_h .

Let (a, b, c) be a state. If b is maximal in D, c has to be b because process voting b cannot change the vote.

Hence, if b is maximal, c = b, i.e. (a, b, b). [Definition] (a, b, c) with maximal b is maximal. \Box States which are not maximal are transitable. Here, let us consider a transition from a state (a, b_1, c_1) into (a, b_2, c_2) where b_1 is not maximal. If $b_1 \prec b_2$, or $b_1 = b_2$ and $c_1 \prec c_2$, (a, b_1, c_1) can be transited into (a, b_2, c_2) . (1, 1, 1) can be transited into (1, 1, 0) and (1, 1, 1) while (0, 0, 0) cannot be transited. Processes which are in a transitable state after voting have to

^{*}一般合意プロトコル

[†]立川 敬行,矢羽田 手哲 ,滝沢 敲

東京電機大学

wait for the global decision. On the other hand, processes which are in a maximal state can terminate, because they made their final decisions already.

[Example] Let us consider that n persons p_1, \dots, p_n would make agreement on where to go. Here, that there are three opinions, i.e. go skiing(K), go swimming(W), and go to hot springs(H). $\alpha|\beta$ denotes α or β . $\alpha\beta$ denotes α and β . Figure 1 shows a lattice on D. \square

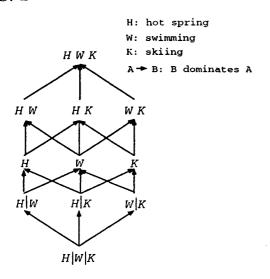


Figure 1: Lattice on D

4 Global Decision

There are the following kinds of global decisions:

- 1 Commitment decision: $GD(v_1, ..., v_n) = 1$ if every $v_i = 1$, $GD(v_1, ..., v_n) = 0$ if some $v_i = 0$ where $D = \{1, 0, \bot, \top\}$.
- 2 Majority-consensus decision on v: $GD(v_1, \ldots, v_n) = v$ if $|\{v_i|v_i = v\}| > \frac{n}{2}$, otherwise $GD(v_1, \ldots, v_n) = v_1 \cup \cdots \cup v_n$.
- 3 $\binom{n}{n}$ -decision on $v: GD(v_1, \ldots, v_n) = v$ if every $v_i = v$ for every i, otherwise $GD(v_1, \ldots, v_n) = v_1 \cup \cdots \cup v_n$.
- 4 (;) -decision on v: $GD(v_1, \ldots, v_n) = v$ if $|\{v_i|v_i = v\}| \geq r$, otherwise $GD(v_1, \ldots, v_n) = v_1 \cup \cdots \cup v_n$.
- 5 Minimal-decision: $GD(v_1, \dots, v_n) = v_1 \cup \dots \cup v_n$.
- 6 Super-vote: $GD(v_1, \dots, v_n) = v_i$ if p_i has the highest priority.

5 Coordination Schemes

If one process p_0 named coordinator coordinates the cooperation of p_1, \dots, p_n , it is centralized control. If there is no centralized controller, it is distributed control. Here, each p_i sends the pre-vote pv_i to p_1, \dots, p_n . On receipt of pv_1, \dots, pv_n , p_i makes the local decision of $v_i = V_i(pv_1, \dots, pv_n)$ by itself. p_i sends the vote v_i to p_1, \dots, p_n . On receipt of v_1, \dots, v_n , every p_i makes the same global decision of v_1, \dots, v_n , every p_i makes the same global decision of v_1, \dots, v_n , every v_1, \dots, v_n . Then, v_1, \dots, v_n has the same v_1, \dots, v_n has the same v_2, \dots, v_n and makes the decision by itself on the basis of v_1, \dots, v_n can make the decision without waiting for the decision from the coordinator.

6 Extended Commitment Protocol

As presented before, each process can vote either 1(Yes) or 0(No) in the 2PC protocols. We would like to extend the commitment protocol so that each process can vote \bot (No_idea) and \top ($Anyone_OK$). In the commitment protocol, each process p_i may not be able to vote even if p_i receives VoteReq from the coordinator p_0 , e.g. p_i is too heavy-loaded to vote. In such a case, p_i can vote \bot . [Basic protocol]

- 1 The coordinator p_0 sends VoteReq to p_1, \ldots, p_n .
- 2 On receipt of VoteReq from p_0 , each p_i sends 1, 0, \perp , or \top to p_0 .
- 3 If p_0 receives 1 from all the processes and p_0 would like to commit, p_0 sends Commit to p_1, \ldots, p_n . If p_0 receives 0 from at least one process or p_0 would not like to commit, p_0 sends Abort to all the processes voting 1, \bot , or \top . If p_0 receives \top from all the processes, every p_i obeys p_0 's decision.
- 4 Here, some p_i votes \perp . If all the decided processes vote 1, p_0 sends Commitable to the undecided processes.
- 5 If p_i votes \perp , on receipt of *Commitable*, p_i sends 1 to p_0 if p_i could commit, 0 to p_0 if p_i could abort. p_i sends \perp to p_0 again if p_i still could neither decide 1 nor 0.
- 6 If p₀ could not receive 1 or 0 from all the undecided processes after sending Commitable m(≥ 1) times, p₀ sends Abort to all the processes.
- 7 After voting 1, ⊥, or ⊤ if p_i receives Abort from p₀, p_i aborts. After voting ⊤ and 1, if p_i receives Commit from p₀, p_i commits. □

7 Concluding Remarks

This paper discusses general framework of various consensus protocols. The general consensus protocol is composed of four steps, i.e. pre-voting, voting, global decision, and final local decision. We have described various consensus protocols in terms of the model. By composing the procedures for pre-voting, voting, global decision, and final local decision, we can make the consensus protocols required in the applications.

Reference

- [1] Bernstein, P. A., Hadzilacos, V., and Goodman, N., "Concurrency Control and Recovery in Database Systems," Addison-Wesley Publishing Company, 1987, pp.222-261.
- [2] Fischer, J. M., Lynch, A. N., and Paterson, S. M., "Impossibility of Distributed Consensus with One Faulty Process," *Journal of ACM*, Vol.32, No.2, 1985, pp.374-382.
- [3] Turek, J. and Shasha, D., "The Many Faces of Consensus in Distributed Systems," Distributed Computing Systems, IEEE Computer Society Press, 1994, pp.83-91.
- [4] Yahata, C. and Takizawa, M., "Cooperation of Multiple Agents to Access Multiple Database Systems," Proc. of the IEEE ICPADS'93, 1993, pp.243-250.
- [5] Yahata, C., Sakai, J., and Takizawa, M., "Generalization of Consensus Protocols," Proc. of the IEEE ICOIN-9, 1994, pp.419-424.