WAL E0E (TR 6 #58) 2EAS 537

A Mapping System from Object-Z to C++ *

6V—1
M. Fukagawa, T. Hikita and H. Yamazaki f
Dept. of Computer Science, Meiji University *
Higashimita, Tama-ku, Kawasaki 214, Japan
1 IntrOduction — BirthdayBook
. i . known : P NAME
The formal specification language Z is now gaining birthday : NAME -+ DATE
popularity [3]. Object-Z is based on Z, augmenting known = dom birthday
the class concept as a structuring facility [2].
X . INIT
Here we discuss on a structural mapping system l—_known >
from Object-Z to C++. The idea of structural map-
. c e B AddBirthday
Pm.g was mltlz%lly proposed by Bagherzade.h Rafsan A(known, birthday)
jani and Colwill [1]. The structural mapping trans- name? : NAME
lates classes of an Object-Z specification into class date? : DATE
interfaces of C++ such as data members and (head- name? € known
ers of) member functions. Thus it is not intended as a birthday’ = birthday U {name? - date?}
code generation system, but rather as a tool for ana- __FindBirthday
name? : NAME

lyzing specification (including syntax and type check-
ing) and for aiding to obtain code from specification.
In {1 the primary framework and basic rules

date! : DATE

name? € known
date! = birthday(name?)

of the mapping was described, which were obtained

— Remind

through case studies. We follow up the idea, and we today? : DATE
describe the rules of mapping more clearly and to the cards! : P NAME
details. We have implemented the major part of the cards! = {n : known | birthdey(n) = today?}

mapping system, on which we report here. The ma-
jor facets of the mapping are the treatment of classes
and their inheritance, types, and predefined operator
symbols.

#include "GlobalDefs.h'
class BirthdayBook{
protected:
//DeclPart

Power< NAME > known;

2 An Example of Structural prunc sz, pate > birenday;

. public:
Mapplng BirthdayBook() ;
BirthdayBook(BirthdayBook& the_BirthdayBook);
The following is an specification of a birthday book, virtual “BirthdayBook();
BirthdayBook&

which is originally written in Z (chap. 1 of [3]) and

. . . . tor=(BirthdayBook& the_BirthdayBook);
slightly modified in order to conform to Object-Z syn- operatoxT SirThdayRes e-mirkhdayRos

virtual void

tax. AddBirthday (FAMEX name_q, DATEX date_q);
This is mapped to the C++ code segment, con- virtual void
sisting of declarations of a class and its members. ,Fmdmrn}d“(""m name_q, DATEE date.x);
virtual void
[NAME,DATE) Remind (DATEX today_q, Power< NAME >X cards_x);
) };

*Object-Z 226 C++ ~Dw vy ¥V XL XF L4
1-%“;;;*“ EREE Lum; didad Classes Power and PFun (actually, templates) are

A AR B T AR R prepared in C++ as a class library for realizing the

5—38

Object-Z operators related to power set and partial
functions, respectively. In these classes related Z
symbols and operators like dom and # are prepared.

All member functions (corresponding to Object-Z
operations) are declared as virtual functions in C++.
Also note the suffixes “.q” and “_x” of the parameters
of the operations AddBirthday and the others. They
correspond to the decorations “?” and “!” of variables
in operation schemas of Object-Z.

3 Structural Mapping

3.1 Basic rules

We basically follow the rules in [1] of the mapping
from Object-Z to C++, which are as follows.

1. Constants and state variables in a class are mapped
into the protected part of a C++ class.

2. All inheritances in Object-Z are mapped to public
inheritances of C+4+-.

3. In the case of multiple inheritance, a base class is
mapped to a virtual base class of C++.

4. Operations in Object-Z classes are mapped to virtual
functions in C++. The return values of the functions
are of type void, and their parameters are passed by
reference.

5. For each class of C++, null constructors, copy con-
structors, assignment operators, destructors, and in-
variants for constants are always supplied.

6. Constructors for types of constants are always sup-

. plied.

3.2 Multiple inheritance

Object-Z allows multiple inheritance, so it should be
realized in the mapping. In the mapping of multi-
ple inheritance in Object-Z specification, one has to
determine a common ancestor class as a base class,
starting from the far ends of derived classes. This
procedure also applies in the case of multiple inheri-
tance among generic classes.

3.3 Types

Power set and function space do not have direct
coounterparts in C++. Moreover, all of these are
generic. But genericity itself can be realized in C++
by the template construct. The generic symbol of
power set is realized as a predefined class in C+4-, as
template <class T> class Power.

Thus, our solution for realizing these type con-
struction methods in C++ is simple; we map each of
these type constructions directly to a (template) class
of C++. Of course there are many ramifications of
actually realizing these classes in C++, which differ
to each other in simplicity and efficiency.

4 Implementation of a Map-
ping System

4.1 Format of Object-Z specification

As a source text of Object-Z specification we use La-
tex source. Object-Z uses Tex style files fuzz.sty
(originally for Z) and oz.sty. Generally, these two
use the same symbol names of Z.

We found that an environment for generic classes
of Object-Z is not included in oz.sty, so that we
have prepared another new style file 0z2.sty, which
the specification writer should add. That is, when
preparing an Object-Z specification one has to write
in Tex:

\documentstyle[fuzz, oz,0z2]

...............

4.2 Imlementation

We use for preprocessing and scanning the automatic
lexical analyzer generator lexz. And also, we use for
syntax analysis and transformation the automatic
syntax analyzer yacc. (We have actually used flez
and bison, instead of lex and yacc.)

In the current implementation of the mapping
system the sizes of source code are approximately:
300 lines of lex text, 1,100 lines of yacc text, and
2,100 lines of semantic functions in C++.

References

[1] G.-H. Bagherzadeh Rafsanjani and S. J. Colwill : From
Object-Z to C++: A structural mapping, in “Z User
Workshop, London 1992”7, Springer- Verlag, 1993, pp. 166~
179.

[2] R. Duke, P. King, G. Rose and G. Smith : The Object-
Z Specification Language: Version 1, TR 91-1, Dept. of
Computing Science, Univ. of Queensland, 1991.

[3] J. M. Spivey : The Z Notation: A Reference Manual,
Prentice Hall, 1989; 2nd ed., 1992.

