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A Note on the Circuit-switched Fixed Routing in Networks

TOSHINORI YAMADA! and SHUICHI UENO!

This note considers the permutation routing problem on circuit-switched fixed routing net-
works. It is known that the size of optimal scheduling for any permutation on a 2-dimensional
square mesh with N vertices is O(v'N). In this note, we show a scheduling for any permuta-
tion with optimal size of O(v/N/ log N) for the N-vertex hypercube and with optimal size of
O(V/N/d) for the N-vertex d-dimensional square mesh and torus. We also show that such a
scheduling can be found in polynomial time by a unified approach.

1. Circuit-switched Fixed Routing

The circuit-switched fixed-routing model has
been adopted for some parallel computer sys-
tems, such as iPSC-2 and iPSC-860 by Intel,
NCUBE/10 by nCUBE, and Symult 2010 by
Ametek®. In this model, a fixed path is dedi-
cated to every source-destination pair and data
is pipelined through the path. Once a fixed
path is established for a source-destination pair,
the path exclusively uses all the edges that
it traverses and no other fixed path that uses
one of those same edges can be established si-
multaneously. Therefore, if multiple source-
destination pairs wish to communicate simul-
taneously, the fixed paths dedicated to those
source-destination pairs must be edge-disjoint.

Let G be a graph representing a network, and
let V(G) and E(G) denote the vertex set and
edge set of G, respectively. A routing p on (7 is
a mapping from the set of all ordered pairs of
vertices in G to the set of all paths in G such
that p([u,v]) is a path connecting u and v. A
communication request on G is a set of ordered
pairs of vertices in G. If [u,v] is in a commu-
nication request, u is called the source and v
the destination of the pair. A communication
request on G is called a partial permutation if
each vertex appears in the request at most once
as a source and at most once as a destination.
A permutation is a partial permutation with
|V(Q)] source-destination pairs.

Let G be a graph with routing p. For a
source-destination pair [u, v], p([u,v]) is called a
fixed path dedicated to [u,v]. A scheduling for a
permutation 7 is a decomposition of 7 into par-
tial permutations such that the fixed paths ded-
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icated to the source-destination pairs in each
partial permutation are edge-disjoint. The size
of a scheduling is the number of partial permu-
tations in the decomposition. Let o(m, p, G) be
the minimum size of a scheduling for a permu-
tation m on a graph G with routing p. Define
that

o(p,G) = maxo(m, p,G), and
(@) = m}n a(p,G).

Since the impact of vertex conflict and path
length is negligible in circuit-switched fixed-
routing networks as mentioned by Bokhari!),
o (@) is the dominant factor for the communica-
tion overhead in circuit-switched fixed-routing
network G. Therefore, designing a routing p
that attains (@) and finding a scheduling with
size o(p, G) are fundamental problems to mini-
mize the communication overhead when realiz-
ing a permutation on a circuit-switched fixed-
routing network . The problems were first
considered by Youssef®. Among other results,
it is shown in Ref.6) that o(G) = O(V'N) if G
is a 2-dimensional square mesh with N vertices.

2. Upper Bound for Product Graphs

The mesh is a typical example of product
graphs, many of which have emerged as attrac-
tive interconnection graphs for large multipro-
cessor systems. The product of two graphs G
and H, denoted by G x H, is the graph defined
as follows:

V(G x H) =V(G) x V(H);
E(G x H) = {([u, v], [v',v])|
(u,u') € E(G)}
U{([u, v], [u,v'])]
(v,v") € E(H)}.
We show the following upper bound for product
graphs.
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Theorem 1 Let G and G2 be N;- and N»-
vertex graphs with p; and ps edge-disjoint span-
ning trees, respectively. Then,

0(G1 x Ga) < max{[N1/pi1, [N2/p21}.
Proof: We prove the theorem by a series of
lemmas. Let T4, T1,1,..., and T} p, 1 denote
p1 edge-disjoint spanning trees of G; and Th,
T51,.-.., and Ty p,—1 denote p, edge-disjoint
spanning trees of G.

Assume without loss of generality that
V(Gy) = [V1] and V(G2) = [N2], where [N] =
{0,1,..., N — 1} for any positive integer N. A
graph with just one vertex z is denoted by .
For any two vertices u = [u1,us] and v = [v1, v2]
in G1 x Ga, p([u,v]) is defined as the concate-
nation of the unique path from u to [ug,wvs]
in 41 X T2,u;modp, and the unique path from
[u1,v2] to v in T4y, modp; X Va2-

Lemmal Let v = [uj,uz], v =
[v1,v2], u' = [ug,u3], V' = [v], 5] € V(G1 X
G2). If [u1,up mod ps] # [u},ub mod ps] and
[vi mod py,vs] # [vy mod py,vp] then p([u,v])
and p([u',v']) are edge-disjoint.

Proof of Lemma 1: The lemma follows from
the following two facts: (i) If ug # u} [ve #
vh] or us mod py # uh mod ps [v; mod p; #

7
U1 mod pl] then uq XTQ’uzmodpz [Tl,m modp1 X’Uz]

and uj x T3,u,modps [Tl,v/lmod,,1 x vh] are edge-
distint; (ii) uy X T2,u2m0dp2 [ull X T2»u'2m0dP2]
and T1 o/ modp, X V4 [T wymodp, X V2] are edge-
disjoint. |
For any permutation 7 on G; x G,
a bipartite multigraph B, with bipartition
(X(Bg),Y(By)) is defined as follows:

X (Br) = {rg,ql z € [N}, 7 € [pa]};
Y(Br) = {cjjyl € [p1], y € [Na]};

Any two vertices 7,y € X(By) and c[;,) €
Y (B;) are joined by

u € V(G1 X Gz)

u = [ug,us],

u| w(u) = [v1,v2],

[u1,us mod po] = [z,1],

[v1 mod p1,v2] = [, ]
parallel edges.

Notice that there is a one-to-one correspon-
dence between the source-destination pairs of 7
and the edges in B,. Let e, denote the edge in
B, corresponding to [u, w(u)].

For any graph G, let degg(v) denote the de-
gree of a vertex v in G and let A(G) denote the
maximum degree of a vertex in G.
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Lemma 2
A(Br) < max{[N1/p1], [Na2/p21}.
Proof of Lemma 2: Consider any rj,; €
X(B;). Since

u € V(Gy x Gy),
{u u = [ug,us], } < [—N—Q-‘
[u1,u2 mod po] = [z, 1] P2

we have

Nz“
de ) < | —1.
8B, (T[z,1) < {m

Similarly, for any c[;,y; € Y (By),

u € V(Gl X Gz),
u| w(u) = [v1,v2),

[v1 mod py,v2] = [4, 9] } : [%w

and so we have
Ny
degp, (cfj,y) < [;1_

Hence A(B;) < max{[Ni/p1], [Na2/p2]1}. O

For any graph GG, a mapping f : E(G) — Nis
called an edge-coloring of G if f(e;) # f(ep) for
any two adjacent edges e; and ey in G, where N
denotes the set of natural numbers. An edge-
coloring f of G is called a k-edge-coloring of G
if f(E(G)) C [k]. It is well-known that, for any
bipartite multigraph G, there exists A(G)-edge-
coloring of G. In fact, the following lemma was
proved by Cole and Hopcroft in Ref. 2).

Lemma 3% Let G be a bipartite multigraph.
Then we can find a A(G)-edge-coloring of G in
O(|E(@)|log |E(G)]) time. o

By Lemma 3, there exists a A(B;)-edge-
coloring f of By. For any i € [A(B)], define

. u € V(G x GQ),
m = 4 [u, 7 (u)] flew) =i

Let w = J[uj,us} and v = [uj,u}] be
any distinct vertices of G; x G2 such that
[u, m(w)], [, m(u')] € ;. Since feu) = flew),

we have
[u1,us mod ps] # [u}, us mod ps], and
[v1 mod p1,ve] # [v; mod py,v5],

where m(u) = [v1,ve], 7(u') = [v],v}]. Thus,
by Lemma 1, p(lu,n(u)]) and p(f,(w)])
are edge-disjoint, and hence (o, ...,7a(B,)-1)
is a scheduling for #.  Since A(Bp) <
max{[N1/p1], [N2/p2]} by Lemma 2, we have
0(G1 x G2) < max{[N1/p1], [N2/p21}. i
Since |E(By)| = N by the definition of By,
we can find a A(By)-edge-coloring of B, in
O(N log N) time by Lemma 3. Hence we can
find the scheduling for 7 in O(N log N) time.
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3. General Lower Bound

We have the following general lower bound
for o(G).
Theorem 2 For any N-vertex graph G,

o(G) = UVN/A(G)),

where A(G) is the maximum vertex degree of
G.

Kaklamanis, et al.¥) showed that for any N-
vertex graph G and any packet-switched oblivi-
ous routing p on G, there exists a permutation
such that p requires (v N /A(G)) steps to real-
ize 7. Since the lower bound is derived from an
estimate of the edge congestion, the same lower
bound can be derived for the circuit-switched
fixed routing by a slight modification of argu-
ment.

4. Tight Bounds for Some Product
Graphs

From the theorems above, we can derive tight
bounds for some product graphs. We denote
the N-vertex path and cycle by Py and CN,
respectively, and let H G;i =Gy xGy x-

Ga.

Ry(k) =

I

is the d- dlmenswnal k- 31ded mesh,

HCk

is the d- dlmensmna,l k-sided torus, and

Qn = HP2
=1

is the n-dimensional cube.
Theorem 3

») = O(N/logN)
where N = |V(Qn)| = 2%
o(Da(k)) = ©(VN/d)
if d is even where N = |V(Dy(k))| = k%
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o(Ra(k)) = O(VN/d)

if d is even where N = |V (Rq(k))| = k.
Proof: The lower bounds can be derived from
Theorem 2 and the fact that A(Q,) = n and
A(Da(k)) = A(Rq(k)) = 2d.

The upper bounds can be derived from The-
orem 1 as follows. We first observe that

Qn = Qrn/21 X Qn/2)s
Dy(k) = Dgy3(k) x Dgs2(k), and
Ry(k) = Ryja(k) x Rysa(k).

We also observe that @, is n-edge-connected,
Dgy(k) is 2d-edge-connected, and Rg4(k) is d-
edge-connected. Since it is well-known that an
m-edge-connected graph has [(m —1)/2] edge-
disjoint spanning trees®>%), we have the desired
upper bounds.
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