Vol. 40 No. 5

Regular Paper

Transactions of Information Processing Society of Japan

May 1999

An Optimal Two-Processor Schedﬁling for a Class
of Program Nets via a Hybrid Priority List

QI-WEI GEt and NAOMI Y OSHIOKA'!

This paper deals with two-processor scheduling for acyclic SWITCH-less program nets that
is a graph representation of data-flow programs. A task graph is a special case of acyclic
SWITCH-less program net and the important difference between a program net and a task
graph is that a program net allows the nodes to fire more than once while a task graph
require each of its nodes to fire exactly once. Hence the multiprocessor scheduling problem
for general acyclic SWITCH-less program nets is N P-hard in a strong sense. In this paper,
we Tequire the program nets to satisfy: (i) all the nodes have the same firing time and (ii) all
the AND-nodes possess single input edge. For such a class of program nets, we first propose
a scheduling method using hybrid priority list that consists of both dynamic and static lists,
and then prove optimality of the schedules generated by the hybrid priority list.

1. Introduction

Multiprocessor systems have been widely
used in a variety of computer applications, such
as information processing, control of robots and
high-speed simulation of dynamic systems?); for
their potential effectiveness in decreasing the
computation times of programs. To maximally
achieve the advantage of a multiprocessor sys-
tem, it is desirable to find out an efficient way to
schedule the processors in executing the tasks
of programs in order to attain the minimum ex-
ecution time.

Usually the problem of multiprocessor
scheduling is, given with processors and a pro-
gram that is represented as a task graph (an
acyclic directed graph) with its nodes and edges
representing tasks and precedence relations be-
tween the tasks respectively, to determine the
order of tasks’ (called node hereafter) execution
assigned to the processors to minimize the to-
tal execution time for the task graph. However,
this problem is extremely difficult and generally
intractable?), which has been known as NP-
hard problem®-%. Only for two special cases
polynomial algorithms were found: (i) the first
is proposed by Hu® and to schedule execution
of rooted task graphs with same node execution
time by using arbitrary processors; (ii) the sec-
ond is by Coffman and Graham® and to sched-
ule execution of general task graphs also with
same node execution time but by two proces-
sors. For this reason multiprocessor scheduling

t Faculty of Education, Yamaguchi University
+1 Fujitsu Ten Limited

is usually approached by heuristic methods?.

Till now in dealing with multiprocessor
scheduling, task graphs, as a program repre-
sentation by looking at the control flows, have
such a limited characteristic that each node
is allowed to be executed only once. How-
ever for parallel computers, such as data-flow

“computers®~19 | data-flow of the programs be-

2064

comes ever important in analysis and evalua-
tion of program executions and therefore the
programs are usually represented as data-flow
program nets'V~1%) (program nets or nets for
short) by taking notice of data flows. So that
each node of a program net is generally exe-
cuted more than once. Generally a program
net is a variation of Petri nets'® and con-
sists of three types of nodes: AND-node, OR-
node and SWITCH-node, that respectively rep-
resent arithmetic/logical, data merge and con-
text switch operations. In this paper, we are in-
terested in list scheduling for a class of acyclic
SWITCH-less program nets (of no SWITCH-
nodes) as to be detailedly stated later.

Task graph is a special case of acyclic
SWITCH-less nets consisting of only AND-
nodes and hence the scheduling problem for
acyclic SWITCH-less nets is N P-hard in strong
sense as well. As list scheduling for task graphs,
CP (Critical Path) method was successively ap-
plied in the optimal schedulings®®) as stated
just now and has also been shown generally ef-
fective for other cases!®). Later, its improved
CP/MISF (Most Immediate Successors First)
was proposed!”) to avoid occurring of worse
schedule when multiple nodes have the same
level from sink nodes of the task graphs. For the

Vol. 40 No. 5

case of node executions more than once, static
list scheduling and GA scheduling have been
studied for program nets with arbitrary proces-
sors'®) and also timed Petri nets’ schedulings
have been studied theoretically and experimen-
tally for repetitive executions'®-20). However
all these methods, except for the cases as dealt
with in Refs.5) and 6), are heuristic and give
only the approximate results. The purpose of
this paper is to propose an optimal scheduling
for program nets

In this paper, we deal with nonpreemptive
two-processor scheduling problem for a class of
acyclic SWITCH-less program nets with same
node execution (called firing thereafter) time, of
which each AND-node is allowed to possess at
most one input edge. First we investigate the
bottlenecks when scheduling is carried out by
using a static priority list constructed according
to longest distances (that is C P method for task
graphs). Then to dissolve the bottlenecks, we
add a dynamic priority list, prior to the static
one, to propose a hybrid priority list. Finally
we show how such a hybrid priority list gives
optimal schedules of the program nets.

2. Preliminary

In a program net PN=(N,E,a,f), a node
z€N is one of three types: AND-node (), OR-
node (A) and SWITCH-node (\7°), represent-
ing arithmetic/logical, data merge and context
switch operations respectively. An edge ecE
represents a FIFO token transmission channel
and possesses two thresholds, o, and . that
represent numbers of tokens taken off from and
deposited on itself by a firing of its output

and input nodes respectively. A token (e) rep-

resents a single datum and token distribution
d"=(dj,,- dg,) expresses token numbers on
each e; at time 7.

There are two special AND-nodes, start node
s (source) firing exactly once and termination
node t (sink). For each z, there are two di-
rected paths from s to z and from z to t.
A firing of node z; occurs at integer time
epochs, 7=0,1,---, and takes <; unit times,
called (node) firing time and supposed to be in-
teger. Once a node fired, it can not be fired any
more before finishing its current firing. Gener-
ally each node has at most two input and two
output edges. In this paper, program nets are
considered as usual as acyclic SWITCH-less net
(of no SWITCH-nodes) with initial token dis-

Optimal Two-Processor Scheduling for Program Nets 2065

Fig.1 A program net to solve quadratic equation:
“ax?+bx4-c=0".
e I
Node type| Before Firing After Firing

:‘ Q
[]

AND - [O

node

(d
OR -
node
®

— J

Fig.2 The firing rules of the nodes of a SWITCH-
less program net.

A
F A A Y

tribution d°=0, unity node firing time and unity
thresholds a.=f#.=1. Further we require AND-
nodes (except s) to possess single input edge.
Figures 1 and 2 show an SWITCH-less net
and the node firing rules respectively. For the
detailed description of program nets, the reader
is referred to Refs. 13) and 14).

The following basic definitions are given for
general SWITCH-less program nets.
Definition 1: Let PN be a program net.

(i) Node z is called firable and denoted d”-
firable with respect to d7, iff (a) for AND-
node z, each its input edge e satisfies d7>1;

2066 Transactions of Information Processing Society of Japan

(b) for OR~node z, one of its input edges e
satisfies d7 >1.

(ii) A firable AND-node fires to take off one
token from each of its input edges and de-
posit one token on each of its output edges;
while a firable OR-node fires to take one to-
ken from any one of its input edges and de-
posit one token on each of its output edge.

(iii) A node sequence o=z;122 -2 of PN is
called firing sequence iff PN can be fired
with single processor in the order of o so
that z; is d™i-*-firable and d™ is resulted
from d™-1 by firing z;.

(iv) o is called terminating iff no node is d™-
firable. PN is called terminating iff all
of its firing sequences are of finite length
k<oco. ad

Since the program nets dealt with in this pa-
per are acyclic, they are always terminating.

Definition 2: Let ¢ and f(z) be a terminating

firing sequence and the firing number of node z

in o, respectively. f(z) is called the mazimum

firing number of z, denoted as f(z), iff there is

no ¢’ such that f'(z) satisfies f'(z)<f(z). O

It has been known!® that, for any two termi-
nating firing sequences of a SWITCH-less net,

o' and o, f'(2)=f(2)=f(2) holds. That is as

only to fire each node z of a SWITCH-less net

F(z) times we need not especially pay attention

to the firing orders of the nodes. The problem

of scheduling a program net PN in this paper
is to fire nodes of PN with two processors so
that firing rules are obeyed and all the nodes

({z}) are fired maximum firings ({f(z;)}) in-

dividually in shortest possible time. The time

costed is called firing completion time.
The following definitions are given for the use
in this paper.

Definition 3: Let z; and 23 be two nodes of a

program net PN=(N, E).

(i) 2 is called predecessor of z, or zs is called
successor of z; iff there exists a path (di-
rected path) from z; to z3. The sets of pre-
decessors and successors of a node z, except
start node s and termination node ¢ respec-
tively, are denoted as Pre(z) and Suc(z)
respectively;

(ii) z1 (z2) is called immediate predecessor
(successor) of zg (z1) iff (21,22)€EFE is sat-
isfied. The sets of immediate predecessors
and successors of a node z, except s and
t respectively, are denoted as IP(z) and
15(z) respectively;

May 1999

(iii) 21 (or zg) is called irrelative node of 2,
(or z;) iff there exist no any paths from z;
to zo and from 25 to z1. The set of irrelative
nodes of z is denoted as Ir(z). m|

Definition 4: Let F(7) and Dis(z) respec-

tively denote the set of firable nodes at time

7 and the maximum distance from z to termi-

nation node ¢ by taking into account the edge

numbers. a

3. A hybrid priority list

In this section, we first apply a static priority
list to program nets to investigate the bottle-
necks. Then to dissolve the bottlenecks we add
a dynamic priority list, that is prior to the static
one, to give a hybrid priority list.

The static priority list is concretely con-
structed by arranging the nodes in descending
order of Dis(z) and is denoted as L,y (includ-
ing all the nodes), which is in fact adopted
in critical path method for task graphs. Let’s
show an example by applying L.y to a program
net shown in Fig.3. For this net, the priority
list is Lgy=5212223242526272829210211212t. By
assigning node firings to two processors accord-
ing to L4y, we can obtain the schedule with
firing completion time 77=30 as also shown in
Fig. 3. In this schedule, the processor P, is idle
during the time interval between 7=6 (includ-
ing 7=6) and 7=7 (denoted as [6,7)).

Looking precisely at the schedule as well
as the situation of the net, we find that

« Priority list

L W = SZTZ2ZsUZsZIZsZoZ,Zn Lt

a

- Schedule by Lay

v s [zlzdzdz 2z zlzllzlzlzlzlz]
LA A AV ATA AT AR TA A A

1s 2 25 30
Z| 2|2 Zo| 2|2 Z|Zegf Lt tf]t
ZAZAZ AT ZAZ 2, t

firing completion time T, = 30

Fig.3 A program net to create parity bit for a bi-
nary data with 8 bits, X=x7zs...20, and the
schedule by Ly, where (i) “>> n”, “&” and
“A” show logical operations of right shift for n
times, AND and XOR respectively; (ii) inside
of node 212, “.” shows its 1 bit input data and
the initial value of “p” is 1; (iii) the 8th output
data of node 212 is the parity bit.

Vol. 40 No. 5

0 5 1 15
P;I S IZI Z3Z3 25®26 Z7\27|Z8 28®Z9|Z:#Z:#

.| 12,]24]24] 747 977 |24] 25| 20] 25| 20] 2,47, 2.,
15 25 28

20
qa&&mm%%%ttttl'
Zzdzzjz. | e[t] ¢]t ||

firing completion time T, = 28
(1) The schedule by further applying Rule 1

15

0 5 10
P11 S |Z1Z3|Z3Z slZ7, Zle7lZ7|Z3]ZxF;Z9 Z,%_Z%
P2I7'zz 74|24 Zizslzﬂzglzz;IZgIZ«,» Z9|Z4Zu|Z,,

15 25 27

20
F%mﬁhﬁﬁﬁﬁ@tt |

zlzdz)z.[z)z]2.]z 2]z, |
4

firing completion time Ty =27
(2) The schedule by further applying Rule 2.

Fig.4 The schedules by further applying Rules 1, 2.

at time 7=>5 there are three firable nodes,
F(5)={zs, 2, 27}, and nodes z; and zg are se-
lected to fire at that time other than the OR-
node z7 due to that z5 and zg are input nodes
of z7 and are prior to z; from L,;;. However we
might have a choice to select the OR-node 2,
instead of zg, so that at time 7=6 there would
be another firable node z¢ besides z7. Thus P,
would not be idle during [6,7), which means
such OR-node should be selected to fire priorly.
Hence we add a priority rule as follows:

Rule 1: An OR-node o; is prior to its two input
nodes, z; and y;, at a moment 7 if (i) z; and y;
have o; as their unique immediate predecessor;
(i1) 05, z; and y; are the only firable nodes at 7.

Applying Rule 1 and L,; to the net of
Fig.3, the schedule becomes one as shown in
Fig.4(1), in which the nodes enclosed with a
circle are selected by Rule 1. Obviously the
firing completion time T»=28 is shorter than
T1=30. However even in this schedule the pro-
cessor P, keeps idle for four unit times from
the time 7=24. This situation arises due to the
accumulation of too many tokens on the input
edge of ¢ and hence we need to dissolve this by
firing ¢ earlier as following rule:

Rule 2: To priorly fire ¢ at a moment 7 if there
are two tokens on the input edge of ¢ at .

By further applying Rule 2, the schedule be-
comes one as shown in Fig.4 (2}, in which node
t enclosed with a circle is selected by Rule 2.
Surely the schedule in Fig.4(2) gives the opti-
mal firing completion time T5=27.

Generalizing the above discussions, we pro-
pose a hybrid priority list including both dy-

Optimal Two-Processor Scheduling for Program Nets 2067

namic and static lists as follows:
Definition 5: A hybrid priority list is a
node list concatenated from 3 priority lists,
L*=Ly-L, Ly, where Ly, L, and L,y are called
t-priority list, OR-priority list and all-priority
list respectively and defined as follows:
(i) L:=t:(7) and () satisfies:
t: ifdi>2
wt(ﬂ:{ ¢ otherwise
where e is the input edge of ¢;
(i) Lo=t0o, (1), (1) - 1, (T) and o; is such
an OR-node that its 2 input nodes,
z; and y;, satisfy IS(x;)=IS(y;)={o;}.
And the order of the OR-nodes satisfies
Dis(0;)>Dis(o;) if i<j and t,, () satis-
fies:

¢oi(T):{ ;i:: if F(T):{Oiaxiayi}

otherwise;
(ili) L.y=z129" -z, includes all the nodes sat-
istying Dis(z;)>Dis(z;) if i<j. O

Definition 6: Let Sy+ denote a schedule gen-

erated by a priority list L*.

(i) The firings of ¢ and OR-node z in Sy« are
called t-priority firing and OR-priority fir-
ing respectively, iff ¢ and z are selected to
fire from L; and L, respectively;

(ii) Node z; is prior to node 2 at time 7, iff
21,22€F (1) and the first appearance of z;
is before 29 in L*. O

It is not difficult to verify that the time com-
plexity in scheduling a program net by the
hybrid priority list L* is O(|N|*f,,), where
fmaz= max{f(z;)} is an invariant element for

a given net.

4. Optimality of list scheduling by L*

We are to show the schedule generated by L*
gives optimal firing completion time.

Generally a schedule generated by any
method is expressed as Fig. 5, in which a pro-
gram net begins its firing at time 7; =0 and ends
at 7441. The notions of this schedule are de-
fined in the following.

Definition 7: Let Sy, be a schedule generated

by a priority list L as shown in Fig. 5.

(i) P is priorly assigned and when P; is idle
it is denoted by “/” in Sr. 7 is first time
that P, is not idle, 73 is first time that P
becomes again idle after 7 and so on in S L;

(ii) A part of S, during time from 7; till 75, ,
(denoted as [75,7;11)) is called j-th span
and the time interval, [;=7;1,—7;, is called
J-th span time. Number of total spans is

2068 Transactions of Information Processing Society of Japan

c-
=,
=
RS

s
[~
| |
| |

&
S
S
<.

Vi V.

Fig.5 General expression of a schedule.

odd, k=2i+1;

(iii) U; and V; show nodes of j-th span,
ul-- u{ and v]---v] , that are assigned to
processors P, and E respectively during
[, 7j+1), and ! and v! indicate individ-

ual nodes.
(iv) Sg is optimal iff Sy, gives minimum firing
completion time of PN. O

Since each node z appears f(z) times in a
schedule S, u] (or v’) may probably denote h-
th firing of a node 2 (1<h<f(z)) Hence here-
after when we say firing of u}, we mean such
h-th firing of node z. In the following discus-
sions, we suppose the schedule shown in Fig.5
is Sp+ generated by L* for program net PN.
Lemma 1: If uf of U, can not be fired before
1. for any scheduling, then Sp- is optimal. O
Proof: It is obvious that at time 7,, tokens ap-
pear only on the input edge of 4§ and the struc-
ture related to the nodes in U, of k-th span is
one of three cases shown in Fig. 6.

Case 1: uf is termination node ¢ and possesses
one or two input tokens, and [,=2.

Case 2: u} is AND-node with one output edge
and possesses one input token. The nodes fol-
lowing u# are AND-nodes with one output edge
or OR-nodes.

Case 3: uf is OR-node and possesses one in-
put token. The nodes following u{ are as same
as Case 2.

It is obvious that this lemma holds for Case 1.
For Cases 2 and 3, uf must be fired after firing
of uf_, and hence u can not be fired before
Te+1—1 if uf can not 'be fired before T, for any
scheduling. Therefore S+ is optimal. Q.E.D

From Lemma 1, to show Sy~ is optimal, we
need to prove that uf can not be fired before 7,
for any schedulings. At first we see the firings
of first span.

Lemma 2: Each node u! of Uy=uj---uj of

May 1999

Case 1
1
0[2 AND-node with exact 1 output

edge or OR nodc

Case 2:

Case 3:

Fig.6 The structure of nodes in Uk and the token
distribution at 7.

Case 1. u% .
S=1y s o Uy
2 ®
Vi
(a) ®)
Case 2: AND-nodes with
exact 1 output edge

Fig.7 The structure of nodes in U and the token
distribution at 72—1.

first span in Sy« can not be fired before 7, +i—1

for any schedulings. O

Proof: The structure related to nodes in Uj is

one of the following cases as shown in Fig. 7.

Case 1: If u} (start node s) possesses two out-

put edges, then the structures are as follows:

(a) lL=1and |IS(u1)|—2 or

(b) 1L=2, IS(ui)={u;,} and uj, is OR—node

Case 2: If there is only one output edge of ui,

then the structures are as follows:

(a) 13>2 and all the nodes are AND-node
satisfying IS(u})={uj,,} (1<i<l;—1) and
|IS(u,1)|—2 or

(b) 11>3, nodes ui,---,uj _, are AND-node
and ul1 is OR-node; and these nodes satisfy
IS(u})={ujy } (A<i<h-1).

Obviously, this lemma, holds for any one of the

cases. Q.E.D

Now let us to see u$’s firing of the third span.

We have the followmg theorem.

Theorem 1: Sp- is optimal if Dis(u$)<1. O

We need the following lemma to prove the
above theorem.

Lemma 3: If processor P, is idle for only once

or twice from time 7, Sz is optimal. O

Vol. 40 No. 5

Proof: The first span of Sy~ is optimal accord-
ing to Lemma 2 and further during the firing of
uf , the last firing in S+, P> has to be idle.
Then if P, is not idle during [rs, 7 +lx—1) Sp
is obviously optimal. When P, is idle only at a
time 7 during [72, 7, +1x—1), then the total fir-
ing number of the nodes during this period of
time is odd, which means P, has to be idle at

some time. Therefore Sy« is optimal. Q.E.D

Proof of Theorem 1: We are to prove this

theorem by dividing the cases into Dis(u$)=0

and Dis(u3)=1.

Case 1: Let Dis(u3)=0, which means u$=t.

In this case, u} must have at most two input

tokens at 73, since t-priority firing must occur

if it has two input tokens. Thus k=3 and [, <2,

i.e. Sp+ is optimal from Lemma 3.

Case 2: Let Dis(u})=1, which means

IS(u3)={t}. Note that in the following, we use

the fact that node u$ never fires at 73—1; oth-

erwise at 73 nodes u$ and t are firable.

If 43 has only one input token at 73, then
l,=2 and hence Sy is optimal from Lemma, 3.
So we need to see when u$ has more than one
input token at 73.

(a) It is impossible that tokens only exist on
the same input edge of u$; otherwise P, is
not idle at 3. The reason is that: (i) if the
tokens only exist on the same input edge,
u3 must be firable and but is not selected
to fire at 73—1; and then (ii) at least one
node fired at 73—1 must be t selected by L,
or node 2¢IP(u}); which means t or the
node in 15(z) is firable at 73 besides u3.

(b) Let uf be an OR-node with tokens ap-
pearing on both of its two input edges. In
this case, there is exact one token on each
its input edge; otherwise P is not idle at 73.
The reason is almost the same as (a) that:
(i) u? must be firable and but is not se-
lected to fire at 73—1; and then (ii) at least
one node fired at 73—1 must be ¢ selected
by Lt or node 2¢IP(u?) or z€IP(u}) with
two output nodes (i.e. no OR-priority fir-
ing occurs for 43); which means ¢ or a node
in I5(z) (except u?) is firable at 73. There-
fore k=5, I3=1 and I5=1 hold. This means
Sy« is optimal from Lemma 3. Q.E.D

The following theorem plays an important
role in proving optimality of Sp« for the case
of Dis(u$)>2, which has been proved satisfied
in Ref. 21).

Theorem 22V): The first firing of third span of

Sp+ (u3’s firing) can not be done before 73 for

Optimal Two-Processor Scheduling for Program Nets 2069

(O S
QO - AND-node
3
Oy
O ---- AND-node
or OR-node
Ot

Fig.8 Structural relations between u3 and all the
other nodes.

any scheduling if the maximum distance of the
related riode is longer than 1 (Dis(u)>2). O

Following result is immediate from Lemmas
1, 2 and Theorems 1, 2.
Corollary 1: If k=1,3 or Dis(u3)<1, Sp~ is
optimal. O

Hereafter we need only to show the optimal-
ity for k>5 and Dis(u3)>2. Figure 8 shows
connection of nodes by taking notice of u3. It
is always true no matter k=3 or k>5, that (i)
at 73 there is no token on any edges except
the input edge(s) of u$; and (ii) the nodes in
Pre(u$)UIr(ud)U{s} have finished all their fir-
ings and will never fire after time 3. As shown
in Fig. 9, u} may be an AND-node or an OR-
node and may have at most one token on each
of its input edges, which is just generated by the
firing of its immediate predecessor(s) at 73—1.
Note that if the token number is more than one,
or the token is not generated at 73—1, then P; is
not idle at time 73 as similar as has been stated
just now in Case 2 of the proof of Theorem 1.
So for a PN whose schedule by L* has k>5 and
Dis(u3)>2, we can transform it into a new one
PN’ by following operations:
(1) Delete all nodes in Pre(ud)Ulr(ud)u{s};
(2) Replace the OR-node possessing exact one

input edge with AND-node;
(3) Add a new start node s and take off the
tokens as shown in Fig. 9.

The following result is immediate from the
above operations and Theorems 1, 2.
Lemma 4: Let PN and PN’ be the original

2070 Transactions of Information Processing Society of Japan

After addition of

3 The structure and
start node in PN”

u; input token at 73

:S :uf

AND-node

OR-node

<

06
O—C—

\. J

Fig.9 The structure and input token of u'“l" at 73 and
addition of new start node s.

. % T 1 T
P, sufluiln--lué o ---- lu’ul|u2| iy
P, S
Fig.10 The schedule S}, generated by L* for PN'.

net whose Sz« has k>5 and Dis(u$)>2, and the
transformed net from PN by the above opera-
tions respectively. If we start firing s at 73—1
for PN, then (i) from time 73, schedule S} . of
PN’ as shown in Fig. 10 is exactly the same as
Sp+; (i) if Dis(u})>2 then u} can not be fired
before 75 for any scheduling; otherwise S}. is
optimal. O
From Lemma 4, it is obvious that the num-
ber of spans of S}. is 2 shorter than Sp«. Re-
cursively by applying operations (1)-(3) and
Lemma 4, we can get a ﬁnal transformed net
PN’ and its schedule S? 7. whose number of
spans is 3 or 5.
Lemma 5: Sp- is optimal if the following
conditions are satisfied: (i) Dis(u}"*')>2 and
u¥*1 can not be fired before 7y;11; (ii) the
part of schedule Sy from tlme Toi+1 1S Opti-
mal; where, i>2. |
The above lemma holds because (1) the fi-
nal two nodes of 2i-th span are uj; €IP(u 3Ly,
vii=t or uii, v eIP(ui™"), and thus u?
or both u}’ and v}’ can not be fired before
Toe1—1; (2) all the firings of the nodes in the
spans from 2¢+1-th are dependent on the firings
of u or both u* and v}.

May 1999

Now we give a theorem showing that Sy« is
optimal.
Theorem 3: For any given acyclic SWITCH-
less PN, of which each AND-node possesses
single input edge, schedule Sy« is optimal. O
Proof: Obviously, this theorem holds individu-
ally for k=1,3 and Dis(u})<1 (in this case k=3
or 5 as can be seen in the proof of Theorem 1).
For k>5 and Dis(u$)>2, recursively applying
operations (1)—(3) and Lemma 4, we have
Case 1: Dis(uf™?)>2 and uf,---,uf"? can
not be fired before 75, - - -, 7,2 respectively; or
Case 2: Dis(uf™?)<1 and uj,---,uf™ can
not be fired before 75, - - -, 7,4 respectively.

For Case 1, if Dis(uf)>2 then uf can not be
fired before 7, from Lemma 4 and Theorem 2;
and thus Sp- is optimal according to Lemma,
1. Even when Dis(uf)<1, Sy« is optimal from
Lemmas 4, 5. Similarly Sp« is optimal from
Lemmas 4, 5 for Case 2. Q.E.D

5. Concluding Remarks

We have proposed a method of non-pre-
emptive two-processor scheduling for a class of
program nets by list scheduling. The charac-
teristics of our method are that the priority list
is hybrid, which consists of both dynamic and
static parts, and the schedules generated by the
hybrid priority list are optimal.

Among multiprocessor scheduling problems,
few optimal solutions have been found till now.
Compared with the concerned researches by
Hu® and Coffman-Graham®, structural com-
plexity of our program nets is between Hu’s and
Coffman-Graham’s; however activity of the nets
during execution is not so simple due to that the
nodes are executed generally more than once.
Therefore as a result of proposing an optimal
scheduling method, this paper gives a contribu-
tion to multiprocessor scheduling.

Nevertheless we have to point out that our
method is not applicable directly to most prac-
tical applications because of the assumption
that each AND-node doesn’t possess two or
more input edges. Hence the most impor-
tant issue for future researchers is to remove
this assumption. Besides, future researchers
on multiprocessor schedulings of program nets
should aim to: (i) To investigate if optimal two-
processor scheduling exists for general acyclic
SWITCH-less program nets; and (ii) To find
efficient heuristic scheduling that allows to use
arbitrary processors.

Vol. 40 No. 5

References

1) Kasahara, H. and Narita, S.: Parallel pro-
cessing for real-time control and simulation
of DCCS, Proc. 4th IFAC Workshop on Dis-
tributed Computer Control Systems, pp.103—
113 (1982).

2) Garey, M.R. and Johson, D.S.: Computers and
Intractability, A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
New York (1991).

3) Coffman, E.G.: Computer and Job-Shop
Scheduling Theory, John Wiley, New York
(1976).

4) Lenstra, J.K. and Kan, A.H.G.R.: Complex-
ity of scheduling under precedence constraints,
Oper. Res., Vol.26, pp.22-35 (1978).

5) Hu, T.C.: Parallel sequencing and assembly
line problems, Oper. Res., Vol.9, pp.841-848
(1961).

6) Coffman, E.G. and Graham, R.L.: Optimal
scheduling for two-processors systems, Acta
Inf., Vol.1, pp.200-213 (1972).

7) Morton, T.E. and Pentico, D.W.: Heuristic
Scheduling Systems, John Wiley, New York
(1993).

8) Rumbaugh, J.: A data flow multiprocessor,
IEEE Trans. Comput., Vol.C-26, pp.138-146
(1977).

9) Veen, A.H.: Dataflow machine architecture,
ACM Computing Survey, Vol.18, pp.365-396
(1986).

10) Yuba, T.: Dataflow Parallel Computers, Syst.,
Cont. and Info., Vol.33, pp.220-229 (1989).
11) Dennis, J.B.: First version of data flow proce-
dure language, Lecture Notes in Computer Sci-

ence, Vol.19, pp.362-376 (1974).

12) Dennis, J.B.: The MIT Data Flow Engineer-
ing Model, Proc.IFIP Congress 83, pp.553—-560
(1983).

13) Ge, Q.W., Watanabe, T. and Onaga, K.:
Topological analysis of firing activities of data-
flow program nets, IEICE Trans. Fundamen-
tals, Vol.E73, No.7, pp.1215-1224 (1990).

14) Ge, Q.W., Watanabe, T. and Onaga, K.: Exe-
cution termination and computation determi-
nacy of data-flow program nets, J. Franklin
Inst., Vol.328, No.1, pp.123-141 (1991).

15) Peterson, J.L.: Petri Net Theory and the
Modeling of Systems, Prentice-Hall, Englewood
Cliffs, N.J. (1981).

16) Adam, T.L., Chandy, K.M. and Dickson, J.R.:
A comparison of list scheduling for parallel pro-
cessing systems, Comm. ACM, Vol.17, No.12,
pp.685-690 (1974).

Optimal Two-Processor Scheduling for Program Nets 2071

17) Kasahara, H. and Narita, S.: Practical mul-
tiprocessor scheduling algorithms for efficient
parallel processing, IEEE Trans. Comput.,
Vol.C-33, No.11, pp.1023-1029 (1984).

18) Ge, Q.W.: On multiprocessor scheduling
of acyclic SWITCH-less' program nets, The
11th Workshop on Clircuits and Systems in
Karuizawa, pp.499-504 (1998).

19) Onaga, K., Silva, M. and Watanabe, T.: Qual-
itative analysis of periodic schedules for de-
terministically timed petri net systems, IE-
ICE Trans. Fundamentals, VolL.ET76-A, No.4,
pp-580-592 (1993).

20) Tanida, T., Watanabe, T., Yamauchi, M.
and Onaga, K.: Priority-list scheduling in
timed Petri nets, IEICE Trans. Fundamentals,
Vol.E75-A, No.10, pp.1394-1406 (1992).

21) Ge, Q-W. and Yoshioka, N.: Properties of
a two-processor list scheduling for acyclic
SWITCH-less program nets, Technical Report
of IEICE, Vol.98, No.220, pp.47-54, CST98-17
(1998).

(Received August 7, 1998)
(Accepted February 8, 1999)

Qi-Wei Ge received the B.E.
from Fudan University, the Peo-
- ple’s Republic of China, in 1983,
.~ M.E. and Ph.D. from Hiroshima,
~ University, Japan, in 1987 and
. 1991, respectively. He was with
Fujitsu Ten Limited from 1991
to 1993. Since 1993 he has been an Associate
Professor at Yamaguchi University, Japan. His
research interest includes Petri net, program
net theory and combinatorics. He is a mem-
ber of the Institute of Information Processing
Society of Japan (IPSJ), the Institute of Elec-
tronics, Information and Communication En-
gineers (IEICE) and the Institute of Electrical
and Electronics Engineers (IEEE).

Naomi Yoshioka received
B.E. and M.E. from Faculty of
Education, Yamaguchi Univer-
sity, Japan, in 1996 and 1998 re-
spectively. She has been with
Fujitsu Ten Limited since 1998.
Her research interest includes
program net and graph theory. She is a mem-
ber of the Institute of Electronics, Information
and Communication Engineers (IEICE).

