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1 Introduction

This paper describes an algorithm used for parsing
spontaneous speech and attempting to deal in an ef-
ficient way with three types of ill-formedness: false
starts, filled pauses, and substitutions. The approach
proposed to recover from these frequently occuring
errors 1s based on a stochastic language model called
Bayesian Language Inference (BLI). After a brief re-
view of previous work on parsing ill-formed input, a
general overview of the BLI algorithm will be given,
emphasizing characteristics that make it an appropri-
ate tool capable of partially dealing with disfluencies
and substitutions. This paper will focus on how that
partial information can be reorganized in order to ac-
curately parse sentences displaying these kinds of ill-
formedness, leading to the description of a statistical
processing system capable of analysing ill-formed in-
put with mathematically sound consideration of full
syntactic context.

2 Parsing Ill-Formed Input

There have been a great number of semantics-free
approaches to the problem of parsing ill-formed sen-
tences. From simple pattern-matching techniques to
chart-based methods, previous work led to a certain
number of characteristics to be expected from a pars-
ing system capable of dealing with simple kinds of
ill-formedness:

¢ precise classification of ill-formedness handled
e consideration of full syntactic context

e similar computational costs in parsing well and
ill-formed input

Chart-based methods suffer from a left-right bias
making it difficult to take into account right con-
text. In order to overcome this difficulty, island-
driven chart-parsing [1] and combinations of bottom-
up and top-down parsing [2] are two ideas which led to
further exploration in the field. However those meth-
ods fail to choose the best possible parse of the input.
Moreover this lack of quantitative context analysis
also introduces higher computational costs.

The use of statistical models, while allowing au-
tomatic training of stochastic grammars, also pro-
vides the quantitative analysis needed in the dis-
ambiguation process. But simple local models like
n-gram models and probabilistic context-free gram-
mars, or even the more complex lexicalized grammar

formalisms only give us general information about
how likely a structure is to appear anywhere in a given
sentence. However, within recent years, new mod-
els have been proposed based on the idea that rule
expansion should also take into account broader lin-
guistic context. Among those, a stochastic language
model called Bayesian Language Inference (BLI) has
the advantage of considering full syntactic context
while performing strictly local calculations.

3 Bayesian Language Inference

BLI is a stochastic language model developped by
H.Lucke [3] based on a context-free language formal-
ism i.e. a set of terminal and non-terminal symbols
and a set of rewriting rules. Assuming that the obser-
vation sequence has been divided into segments, the
BLI algorithm first determines the parse tree topol-
ogy for a given sentence, but without making assump-
tions on the nature of each node. This is done by con-
Jjecturing the existence of all possible nodes spanning
any sub-sequence of the sentence. Recursive calcu-
lation of the probability that each node rewrites as
the sub-sequence it spans is then performed, in a way
similar to calculations of inside probabilities in the
Inside-Outside training algorithm. Using prior pa-
rameters obtained through training, division points
In the parse tree are determined by minimizing en-
tropy.

Given this blank tree structure, the BLI method
then assign non-terminal symbols to the nodes of the
tree. For each node, it divides the input sentence in
two parts (Figure 1):

e inner evidence e, part of the sequence actually
produced by node u

e outer evidence e}, remaining part of the evidence

parse tree

observation sequenc grammar node

Figure 1: Definition of inner and outer evidence



3 —108

e stands for the entire observation sequence
spanned by the tree. In this probabilistic framework,
the assignment task for each node u is simply that of
finding the vector BEL(u) = P(ule) and assigning to
u the non-terminal symbol with highest probability.
In order to calculate BEL(u), two auxiliary vectors
are defined, A(u) = P(e;|u) and w(u) = P(ulel).
A(u = nt) and m(u = nt) are the probabilities that
node u stands for non-terminal nt, the first proba-
bility being based on inner evidence, the second on
outer evidence. All the As and 7s can be determined
recursively using only local calculations, and the be-
lief vector is then given by:

BEL(u) = —_A’ES;)_”:EZ)

where ab is componentwise vector product, and a - b
is the dot product. This equation can be understood
in the following way: for each non-terminal symbol
nt, the probability that node u stands for nt (given
the entire observation sequence) can be seen as the
combination of two different sources of information:
inner evidence (A(u)) and outer evidence (7 (u)). Full
syntactic context is therefore considered, divided into
inner and outer evidence.

4 Expanding BLI to Deal with Ill-
Formed Input

The main idea behind this work is that whereas
the BLI method uses A and 7 vectors as auxiliary
means to calculate BEL, the information these vec-
tors contain is particularly useful as it is in parsing
ill-formed input. Keeping in mind that the types of
ill-formedness dealt with in this paper are false starts,
filled pauses, and substitutions, let’s now examine
how a BLI parser trained on well-formed input might
recover from each type of error, with a given parse
tree structure already available.

In the case of false starts and filled pauses, also
known as disfluencies, the problem is to identify and
eliminate non-contributing portions of the input se-
quence. In the case of an isolated disfluency, spanned
for instance by node v (Figure 1), ill-formedness will
be detected at node u. However while the inner por-
tion of the evidence including the disfluency will fail
to bring the information necessary to determine A(u),
the parser will give an accurate analysis of the outer
portion of the evidence, m(u) corresponding to well-
formed input. Thus in the case of a disfluency occur-
ing at node v, nodes z and u being in fact one iden-
tical node, the disfluency can be detected by directly
comparing A(z) and w(u). If the non-terminal sym-
bols with highest probability for these two vectors are
identical, the portion of the utterance responsible for
the disfluency can then be eliminated and the parser
proceed with calculations of A and 7 vectors.

In the case no match is found between the non-
terminal symbols yielded by the analysis of outer and
inner evidence, we can then hypothesize that the ill-
formedness involved here is due to a substitution. As-
suming that we have a single substitution occuring,
the m probabilities based on outer evidence can be cal-
culated for each single word. We can then argue for
the presence of a substitution whenever a contradic-
tion appears between information brought by bottom-
up analysis (the syntactic nature of the words, given
by the inner evidence) and by top-down analysis (the
expected non-terminal given the global sentence con-
text, corresponding to outer evidence). Several ways
of measuring this contradiction can be devised. But
what appears to be the simplest one is directly com-
paring the values of BEL corresponding to the highest
non-terminal probabilities for each word, and decid-
ing that the lowest one indicates in which word the
substitution occurs.

Yet two major problems remain to be addressed:
how to deal with multiple errors and how to deter-
mine a possible parse tree structure from ill-formed
input. A possible answer to the first question would
be to use estimates for the = probabilities, which can’t
be calculated in the case of multiple errors. Such es-
timates are already provided by the original BLI al-
gorithm in the form of prior probabilities. But more
importantly, to complete the description of the pro-
posed algorithm, the parse tree structure has to be
determined in some way. This can be done by in-
troducing noisy modifications in the probabilities of
the rewriting rules. Thus if the input is well-formed,
the chosen tree structure will not differ from the one
found in the original BLI method. Moreover in the
case of ill-formed input, the tree structure chosen will
be the one using the greatest number of partially well-
formed structures, which is what we would naturally
tend to expect from such a system.
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