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In genetic algorithms, in order to attain the global optimum without getting stuck at a local
optimum, appropriate diversity of the structures in the population needs to be maintained. I
propose a new genetic algorithm called DCGA (Diversity-Control-oriented Genetic Algorithm)
to attain this goal. In the DCGA, the structures of the population in the next generation
are selected from the merged population of parents and their offspring on the basis of a
selection probability, which is calculated by using a hamming distance between a candidate
structure and the structure with the best fitness value, and is larger for structures with larger
hamming distances. The diversity of structures in the population can be externally controlled
by adjusting the coefficients of the probability function so as to be in an appropriate condition
according to the given problem. Within the range of my experiments, the DCGA showed a
markedly superior performance to the simple GA and it seems to be a promising competitor
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of previously proposed algorithms.

1. Introduction

Genetic algorithms {(GAs) are a promising
means for function optimization. Methods for
function optimization are required to attain the
global optimum without getting stuck at a local
optimum. For multimodal functions, because
the performance of the simple GA is poor in
this respect, various studies have been carried
out to improve the performance of the GA. The
major ones are as follows.

For the simple GA, Baker!) observed that
premature convergence (convergence to a lo-
cal optimum) often occurs after an individual
or a small group of individuals contributes a
large number of offspring to the next genera-
tion. Booker? mentioned that a large number
of offspring for one individual means fewer off-
spring for the rest of the population, and when
too many individuals have no offspring at all,
the result is a rapid loss of diversity and pre-
mature convergence. What is needed to handle
premature convergence is to prevent this situa-
tion.

In the paradigm of the traditional GA, Gold-
berg, et al. 3) proposed a method of sharing
function that mitigates this issue by allowing
the formation of species in niches. This mech-
anism modifies the reproduction probability of
a population member by adjusting the fitness
value of the structures according to how many
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population members occupy a niche of the so-
lution space. Although the method has proved
effective, it is computationally very expensive,
because the distance between each two struc-
tures in the population needs to be calculated.

Also in the paradigm of the traditional GA,
Srinivas, et al. %) proposed the use of adaptive
probabilities of crossover and mutation to re-
alize the twin goals of maintaining diversity
in the population and sustaining the conver-
gence capacity of the GA. In his algorithm, the
probabilities of crossover and mutation are var-
ied depending on the fitness values of struc-
tures. High fitness structures are protected,
while structures with subaverage fitness value
are totally disrupted. However, because the se-
lection for reproduction is biased toward select-
ing the better-performing individuals, prema-
ture convergence often occurs and is essentially
inevitable as indicated in the results of Srinivas.

Eshelman® proposed an algorithm employ-
ing a highly destructive uniform crossover
(HUX) and the Population-Elitist Selection
(PES) method that is based on cross-
generational deterministic rank-based survival
selection. In the reproduction stage, two candi-
date structures are selected for mating. In or-
der to maintain diversity, the hamming distance
between them is calculated, and if half that
distance does not exceed a difference thresh-
old, they are not mated and deleted from the
population. The difference threshold is auto-
matically reduced as the population converges.
Many studies have shown that the performance
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of the CHC in the standard benchmark tests
is extremely good and robust 67, whereas the
algorithm is not so easy to use, because it con-
tains the restart function.

In order to attain the global optimum with-
out getting stuck at a local optimum, it is es-
sential to control the diversity of the structures
in the population during the search so that
local searching and global searching are per-
formed in a balanced way. To attain these twin
goals, I have developed a new genetic algorithm
called DCGA (Diversity-Control-oriented Ge-
netic Algorithm)®)-®). In the DCGA, the struc-
tures for the next generation are selected from
the merged population of parents and their off-
spring, with duplicates eliminated on the basis
of a selection probability, which is calculated by
using the hamming distance between the candi-
date structure and the structure with the best
fitness value. The selection probability is larger
for structures with larger hamming distances.
The diversity of structures in the population
can be externally controlled by adjusting the
coefficients of the probability function so as to
be in an appropriate condition according to the
given problem. Within the range of my experi-
ments, the DCGA outperformed the simple GA
and seems to be a promising competitor of the
previously proposed algorithms.

This paper describes the DCGA and presents
the results of experiments to show the effective-
ness of the proposed method. The results are
compared with those for the simple GA and for
the promising previous studies.

2. The Simple GA

The outline of the simple GA is described to
facilitate the later explanation. In the simple
GA, the following processes are performed:
(1) The number N of individuals in the pop-

ulation is constant, and the population is
initialized by using random numbers.
(2) In the reproduction stage, structures
are selected from the present population
P(t — 1) and recombined to form the off-
spring population C(t), where t is the
generation and a structure is the geno-
type of an individual. The selection for
reproduction (select,) is biased toward
selecting the better-performing individ-
uals. The recombination is performed by
using crossover on the basis of probabil-
ity. A low rate of mutation is used in the
recombination stage to maintain popula-
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tion diversity.

(3) The selection for survival (selects) is usu-
ally unbiased, typically replacing the en-
tire parent population P(¢ — 1) with the
child population C(¢).

3. DCGA

In order to improve the performance of GAs,
the algorithm needs to have the ability to ro-
bustly explore the solution space to find out
the best region containing the global optimum
(global search) and to escape from a local op-
timum when it gets stuck there. Attaching
importance to only current better-performing
structures may result in premature conver-
gence. On the other hand, a current worse-
performing structure may have a greater po-
tential for evolving toward a better future
structure to attain the global optimum. The
idea motivating my research is to exploit these
worse-performing structures, instead of discard-
ing them, by maintaining the diversity of struc-
tures in the population. In addition, it needs
to exploit the best structure obtained so far,
because it may be in the region containing the
global optimum. The DCGA was devised to
achieve these twin goals.

The skeleton of the DCGA is shown in Fig. 1.
The number of structures in the population P(t)
is constant and denoted by N. The population
is initialized by using uniform random num-
bers. In the selection for reproduction, select,,
all the structures in P(¢ — 1) are paired by se-
lecting two structures without replacement to
form P’(t — 1). That is, P’(t — 1) consists of
N/2 pairs. By applying mutation with proba-
bility p,, and always applying crossover to the
structures of each pair in P'(¢t — 1), C(t) is pro-
duced. The mutation rate p,, is constant for
all the structures. The structures of C(t) and
P(t—1) are merged and sorted in order of their
fitness values to form M(t). In the selection for
survival, selects, those structures that include
the structure with the best fitness value are se-
lected from M(#) and the population in the next
generation P(¢) is formed.

The details of the selection for survival,
select,, are as follows:

(1) Duplicate structures in M(t) are elimi-
nated, and M'(¢) is formed.

(2) Structures are selected by using the
Cross-generational Probabilistic Survival Se-
lection (CPSS) method, and P(t) is formed
from the structure with the best fitness value
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begin
t=0;
initialize population P(t);
evaluate structures of P(f);
while (termination condition not satisfied) do;
begin;
t=t+1;
select. P'(¢-1) from P(z-1) by randomly pairing
all structures without replacement;
apply mutation with p,, and crossover to each
pair of P'(¢-1) and form C(f);
evaluate structures of C(f);
merge structures of C(f) and P(¢-1) and sort
them in order of their fitness values to form
M(®);
select; N structures including the structure
with the best fitness value from M(f) to
form the next population P(¢) according to
the following procedure:
(1) eliminate duplicate structures in M(z);
(2) select structures with CPSS method;
(3) if the number of selected structures is
smaller than N, introduce new structures;
end;
end;

Fig.1 Skeleton of DCGA.
in M/(t) and the selected structures. In the
CPSS method, structures are selected by us-
ing random numbers on the basis of a se-
lection probability defined by the following
equation:

ps = {(1— OH/L+c}°, (1)

where h is the hamming distance between the
candidate structure and the structure with
the best fitness value, L is the length of the
string representing the structure, c is the
shape coefficient, and « is the exponent. If
the generated random number is smaller than
ps calculated for a structure, then the struc-
ture is selected; otherwise, it is deleted. The
selection process is performed in order of the
fitness values of all the structures in M'(¢) ex-
_cept the structure with the best fitness value.

(3) If the number of the structures in resul-
tant P(¢) is smaller than N, then new struc-
tures generated by using random numbers are
introduced by the difference between these
numbers. In the traveling salesman problem,
the hamming distance is calculated by consid-
ering only the order of the city in the struc-
ture, because the position of the city does not
have a meaning.
The reasons for employing the above methods
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in the DCGA are as follows.

Side-effect of crossover and mutation may de-
stroy the better-performing schemata obtained
so far. In the DCGA, because the structure
with best performance obtained so far always
survives intact into the next generation, the in-
fluence of this side-effect is small and thus large
mutation rates can be used and crossover can
always be applied. This results in producing
offspring that are as different as possible from
their parents and in examining regions of the
search space that have not yet been explored.
In fact, the best result was obtained when a
crossover rate of 1.0 was used in the examples
mentioned later. On the other hand, in the sim-
ple GA, mutation is a background operator that
ensures that the crossover has full range alleles
so that the adaptive plan is not trapped on a
local optimum !9, and low mutation rates are
generally used.

Duplicate structures reduce the diversity of
the structures in the population and often
cause premature convergence, because the same
structures can produce a large number of off-
spring with the same structure in the next gen-
eration. Therefore it is effective to eliminate
duplicate structures in order to avoid prema-
ture convergence, as will be shown in later ex-
amples.

Equation (1) represents a curve that inter-
sects the two points [h = 0, p; = ¢] and
[h = L, p; = 1.0] as shown in Fig.2. The
curvature of the curve is larger in the region of
smaller h, whereas it becomes almost a straight
line in the region of larger h. As o becomes
smaller, the curvature in the region of smaller
h becomes larger. When « is equal to 1, it
becomes a straight line. As ¢ becomes larger,
ps becomes larger and the curve approaches
a horizontal straight line. Preliminary exper-
iments on functions for the selection probabil-
ity showed that the performance is closely re-
lated to the shape of the curve in the region of
smaller h. Equation (1) was selected because it
can simply and flexibly express various curves
in the region of smaller A.

The structure with the best fitness value ob-
tained so far can always survive. Before the
global optimum is attained, however, it is a lo-
cal optimum and an increase in the number of
structures similar to it may result in premature
convergence. Therefore, the selection of struc-
tures based on Eq. (1) is biased toward selecting
structures with larger hamming distances from
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Fig.2 Example curves of Eq.(1). (a) a = 0.19,
¢ =0.01; (b) & =0.51, ¢ = 0.235.

the structure with the best fitness value. The
larger bias produces greater diversity of struc-
tures in the population.

The degree of this bias is “externally” ad-
justed by the values of ¢ and . Their appropri-
ate values need to be explored by trial and er-
ror according to the problem. As demonstrated
in the experiments described later, Eq.(1) is
very suitable for controlling the diversity of the
structures in the population so as to be in an
appropriate condition by adjusting the values
of ¢ and a. I believe that the diversity of the
structures in the population should be exter-
nally adjusted independently of the condition
of the population, because the algorithm itself
cannot recognize whether the population is in
the region of a local optimum or in that of the
global optimum.

The selection with the CPSS method may
slow the convergence speed to the global op-
timum, whereas it can be compensated and in
fact improved by preventing the solution from
getting stuck at a local optimum and stagnat-
ing. In this sense, the speed of convergence
to the global optimum depends upon the di-
versity of structures in the population. In the
DCGA, it can be controlled indirectly by the
user through the constants o and ¢ of Eq. (1).

The selection process uses the selection prob-
ability ps, and is performed in order of the fit-
ness values of the structures, without consid-
ering the fitness value itself. This gives more
chance of survival to current worse structures
with fitness values below the average. In the
PES method ®), because the structures are de-
terministically selected in order of their fit-
ness values, the diversity of structures is often
rapidly lost, and this results in premature con-
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vergence. The CPSS method can avoid such a
situation. The superiority of the CPSS method
to the PES method will be demonstrated later.

The introduction of new structures occurs
during iteration when the diversity of structures
in the population happens to become smaller.
This is equivalent to the introduction of very
large mutations into the population, and can
work effectively to restore the diversity auto-
matically.

When the structure is represented by a bit
string, binary coding or gray coding!V is usu-
ally used. With gray coding, the hamming dis-
tance between two structures can more accu-
rately represent the degree of their similarity in
the phenotype represented by decimal numbers.
With the DCGA, because the performance with
gray coding is superior to that with binary cod-
ing, as will be demonstrated later, it is recom-
mended that gray coding be used.

The methods employed in the DCGA can
work cooperatively to escape from a local opti-
mum and avoid premature convergence in the
following way.

In the DCGA, the diversity of the struc-
tures in the population is maintained by ap-
plying a large mutation rate, eliminating dupli-
cate structures and the selection with the CPSS
method. In addition, when the diversity is lost,
it can automatically be restored by introduc-
ing new structures. Structures that survived
and the structure with the best fitness value
obtained so far can always become parents and
produce their offspring. Crossovers are always
applied to diverse structures maintained in the
population. When a pair of structures with a
small distance are mated, their neighborhood
can be examined to result in the local search.
When a pair of structures with a large distance
are mated, a region not yet explored can be ex-
amined to result in the global search. In such
a way, local as well as global searches can be
performed in parallel.

The structure with the best fitness value ob-
tained so far always survives as a promising
candidate to attain the global optimum, and
its neighborhood can be examined by the lo-
cal search. On the other hand, a current
worse-performing structure that may contain a
schema concerning the global optimum can sur-
vive with a certain probability. This may give
the structure a chance to produce an offspring
with a fitness value close to the global optimum.
This mechanism is similar to that of simulated
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annealing (SA), which can escape from a lo-
cal optimum by accepting a solution based on
a probability whose performance is worse than
the present solution. In the DCGA also, the
solution can escape from a local optimum in a
similar way to the SA.

With the simple GA, better-performing
structures can produce multiple offspring.
Therefore, schemata for a dominating local
optimum can increase rapidly and eventually
dominate the population. On the other hand,
with the DCGA, each structure has only one
chance to become a parent irrespective of its
performance. In addition, the same structures
are eliminated and the number of structures
similar to the best-performing one is restricted
by selection according to the CPSS method.
This can prevent a structure (especially the
structure with the best fitness value) from con-
tributing many offspring to the next generation,
and can eventually result in avoiding premature
convergence.

The time complexity of the simple GA and
the DCGA can be compared as follows. The
number of function evaluations in the reproduc-
tion selection stage is N times per generation
in both methods. The number of computations
for the selection for reproduction is almost the
same in both methods. In the survival selec-
tion stage, the number of computations for the
DCGA is much larger than that for the simple
GA because of the number of computations for
the processes (1), (2), and (3) in Fig.1. The
time complexity of the check for the identity of
structures in the process (1) is not so large, be-
cause the check needs to be performed among
structures with the same fitness value. The
time complexity of the calculation of the dis-
tance between the candidate structure and the
structure with the best fitness value is O(N).
With the CHC), it is also O(N). With the
sharing function method ®, it is O(N?). There-
fore, the computational cost of maintaining the
diversity of structures is much lower for the
DCGA than for the sharing function method.

With the simple GA, the parameters to be
tuned are N, pn,, and p., whereas with the
DCGA, they are N, p,, ¢ and a.

The originality of the DCGA lies in present-
ing a new genetic algorithm in the generation-
replacement-type GA that combines the follow-
ing ideas and in experimentally proving their
effectiveness for attaining the global optimum.
In the selection for survival, (1) duplicate struc-
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tures are completely eliminated, and (2) struc-
tures for the next generation are selected on
the basis of Eq.(1). The DCGA has a salient
feature that the diversity of structures in the
population (therefore the speed of convergence
to the global optimum) can be externally con-
trolled through the constants « and ¢ in Eq. (1)
so as to be in an appropriate condition accord-
ing to the given problem. As far as I know, the
CPSS method defined by Eq. (1) has not been
presented in previous research.

The major difference between the DCGA and
the CHC® is that the former employs the
CPSS method and the latter the PES method.
In terms of the approach to controlling diver-
sity, the latter uses the self-adaptive difference
threshold for mating, whereas the former is
based on the externally adjusted selection prob-
ability.

If we compare the DCGA with the shar-
ing function method 3) the purpose and the
method of realizing diversity of structures are
essentially different. The purpose of the former
is to attain only the global optimum efficiently,
whereas that of the latter is to investigate many
peaks of a multimodal function in parallel. The
method of the latter follows the paradigm of the
traditional GA, and modifies the reproduction
probability of a member of the population by
adjusting the fitness value of the structures ac-
cording to how many population members oc-
cupy a niche of the solution space.

4. Experimental Results

4.1 Computational Conditions

The performance of the DCGA has been
tested on various benchmark problems and
compared with those of the simple GA and ex-
isting algorithms. I present here the results for
three standard benchmark problems that are
difficult for GAs to optimize: deceptive func-
tions ), multimodal function £6 1%, and 30-city
traveling salesman problem (TSP)!%). The 6
function is resistant to hill-climbing, nonsepara-
ble, and nonlinear, and thus satisfies the guide-
lines for test problems proposed by Whitley, et
al.1Y. These problems were selected because
the results reported in the literature for promis-
ing previous methods such as CHC %)18) can be
used for comparison.

Each problem has only one global optimum,
which was searched by GAs. For both the
DCGA and the simple GA, two-point crossover
was used. For the DCGA, crossover was al-
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ways applied to each pair in P'(¢ — 1). For
the simple GA, the performances of the fol-
lowing three methods were compared: (1) the
roulette selection method using the elitist strat-
egy with or without fitness scaling, (2) the pure
selection method with the fitness scaling pro-
posed by Grefenstette !5, and (3) the stochas-
tic remainder selection method without replace-
ment 9-18) with or without fitness scaling. The
results of the first method without fitness scal-
ing (De Jong’s standard GA) '%), which showed
the best performance, are described below. For
the DCGA, the following three cases of com-
putation conditions were tested in order to ex-
amine the effects of the methods (1) and (2) in
Fig.1 that are employed in the survival selec-
tion. Case-1: noneliminating duplicate struc-
tures and the PES method. Case-2: eliminat-
ing duplicate structures and the PES method.
Case-3: eliminating duplicate structures and
the CPSS method. Case-3 is the DCGA itself.
With the PES method, N structures for the
next generation are deterministically selected
from M(t) or M'(¢) in order of their fitness val-
ues in the process (2) in Fig. 1.

I examined combinations of best-performing
parameter values, including the population size,
changing their values little by little. I per-
formed 50 trials per parameter set, changing
seed values for the random number generator to
initialize the population. The same 50 seed val-
ues were used for the trials with each parame-
ter set. The trial was continued until the global
optimum was attained by at least one structure
(I call this convergence) or until the maximum
number of function evaluation times (MXFE)
was reached. The maximum number of function
evaluation times was 50,000. The performance
was evaluated by the rate of instances out of
the 50 trials in which the GA converged (CVR)
and the average number of function evaluation
times in those trials that converged (AVFE).
(An algorithm performs better on a function if
it converges more often, or if it converges the
same number of times as its competitor but in
fewer evaluations.).

In the following, I present the best result ob-
tained in each case. Table 1 shows the defini-
tions of major symbols used in the subsequent
tables.

4.2 Deceptive Functions

Goldberg’s order-3 deceptive functions?
were used. Their structure consists of a 30-bit
binary string, and the value of the function is
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Table 1 Definitions of major symbols in Tables.

Symbol Definition

G Gray coding

B Binary coding

N Population size

Pm Mutation rate

D Inversion rate

Pe Crossover rate

a Exponent for probability function, Eq.(1)

c Shape coefficient for probability function, Eq.(1)

CVR Convergence rate (rate of successful trials)
AVFE Average number of function evaluation times
SDFE  Standard deviation of function evaluation times
AVEL Average value of error logarithm (EL)

AVBF Average value of best fitness values

MXFE  Maximum function evaluation times

Table 2 Goldberg’s order-3 deceptive function.

§000)=28 f(001y=26 f(010)}=22 HOI11)=0
f100)=14 f101)=0 f110)}=0 f111)=30

Table 3 Best result for tightly ordered deceptive
function on simple GA.

[N Tps | p. [CVR | AVFE [SDFE_|4VBF |
[ 80 {0003 062 [ 01 | 34720 | 8760 | 294.4 |

Table 4 Best results for tightly ordered deceptive
function on DCGA.

N | pn a c CVR | AVFE | SDFE | AVBF
84 10095 {— |— 1098 |19104 | 7078 3000
100 10036 | — |— 110 8322 6154 3000

4 10008 1051 1033 {10 6182 3452 3000

TR

Table 5 Best result for loosely ordered deceptive
function on simple GA.

N CVR |AVFE |SDFE _|AVBF
110 10.0034] 06 04 174591 18294 | 2979

Table 6 Best results for loosely ordered deceptive
function on DCGA.

DPn a c CVR | AVFE | SDFE | AVBF
0086 |— |— 107 [31996 | 9284 | 2992
008 |— |— 1098 |24687 |10207 | 3000
0045 1037 1083 |10 14996 | 6512 | 3000

Case
1
2
3

500t

the sum of ten 3-bit subfunctions. The subfunc-
tions are defined as in Table 2. The tightly or-
dered and loosely ordered functions were tested.
The global maximum is 300.

Tables 3 and 4 show the best results for the
tightly ordered function on the simple GA and
the DCGA, respectively. Table 5 shows the
best result for the loosely ordered function on
the simple GA with an MXFE of 100,000, be-
cause no trials converged after 50,000 evalua-
tions. Table 6 shows the best results for the
loosely ordered function on the DCGA.

4.3 Multimodal Function

The f6 function !?) is as follows:
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Fig.3 Section of f6 function.

Table 7 Best results for f6 function on simple GA.

Code | N | ps | p. |CVR |AVFE |SDFE |AVEL
G| 70 10001 | 0.6 (022 [28280 | 7382 | 353
B | 48 [00009] 0.6 [028 [14983 12328 | 3.89

Table 8 Best results for f6 function on DCGA.

Case N Pn a c CVR | AVFE | SDFE | AVEL
92 j0091|— [— .0 25994 | 661 8.94

94 j0081|— |— 0 24145 557 9
12 100141051 10235 |10 7795 9200 8.9
12 0014051 10235 (066 |22383 | 10317 | 740

mnnng

—ain2 . /2 2
6 =054 250 VI tY 2)

[1+0.001(z2 + y2)}?

This function is cylindrically symmetric about
the z(f6) axis, and has a maximum value of 1.0
at the origin. Figure 3 shows a section for
y = 0 including the z and z axes. The points in
the search space were coded as Cartesian z and
y values in the range —100 to +100 with 22-
bit code, respectively. Gray coding and binary
coding were compared. The error of the best
fitness values (fmax) Obtained in each trial is
calculated by using the following equation:
EL = - loglo(l - fmax) (3)

For the exact global optimum to be searched by
GAs in the discrete space, EL = 8.94.

Tables 7 and 8 show the best results for the
simple GA and the DCGA, respectively.

4.4 Traveling Salesman Problem

The Euclidean symmetric 30-city TSP %)
whose global optimum is 420 was tested. The
structure was expressed by path representation.
For both the DCGA and the simple GA, or-
der crossover!® was used. For the mutation
method, the performance with order-based mu-
tation ®), positionbased mutation, and inversion
was compared. The results for the last of these
which showed the best performance, are de-
scribed below.

June 1999

Table 9 Best result for 30-city TSP on simple GA.

[N 15 1p._ |CVR |AVFE_[SDFE_|AVBF |
I's6 {009 {061 |026 [80132 [14207 | 4269 |

Table 10 Best results for 30-city TSP on DCGA.

Case | N | p a c CVR | AVFE | SDFE | AVBF
1 110 10206 | — |— 1052 |20299 | 859% 4218
2 120 {0196 | — |— [092 |21243 | 6748 4202
3 22 10098 | 019 | 001 | 094 |23209 [10578 | 420.1

Table 9 shows the best result for the simple
GA with an MXFE of 100,000, because no trials
converged after 50,000 evaluations. Table 10
shows the best results for the DCGA.

4.5 Summary of the Results

The following points were experimentally
confirmed through investigation of the above
three problems.

In all these three problems, the performance
of the DCGA was remarkably superior to that
of the simple GA.

With the deceptive functions and the 30-city
TSP, the performance in case-2 was remarkably
better than that in case-1. With the {6 function,
however, the difference was slight. Therefore,
it is obvious that although the degree of the
effect is different for each problem, eliminating
duplicate structures is effective for improving
the performance.

With the deceptive functions and the {6 func-
tion, the performance in case-3 was remarkably
better than that in case-2. With the 30-city
TSP, however, the difference was slight. There-
fore, it is obvious that although the degree
of the effect is different for each problem, the
CPSS method is superior to the PES method.

According to the results for the f6 function on
the DCGA, the performance with gray coding is
remarkably superior to that with binary coding.
Therefore, it is recommended that gray coding
be used for the DCGA.

The best results in case-3 obviously show that
there exists an optimum diversity of the struc-
tures in the population according to the given
problem. The value of pso, which is ps for h = 0,
represents the magnitude of the selection prob-
ability, and a smaller ps can produce a higher
diversity of structures in the population. The
value of pso in the best results is 0.57 for the
tightly ordered deceptive function, 0.93 for the
loosely ordered deceptive function, 0.48 for the
6 function, and 0.42 for the 30-city TSP.

The best results in case-3 obviously show that
there exists an optimum population size. It
seems that a harder problem requires a larger
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Table 11 Best results for each of the problems on
CHC.

Problem N _ IMXFE | CVR | AVFE | SDFE | AVBF
Oder-3 Dec, 1.0 | 20960 980 300.0
16 function 50 |50000 |10 6496 725 —
30-city TSP 0.58 | 24866 2404 429.2

Table 12 Best results for each of the problems on
Srinivas’s method.

Problem N | MXFE | CVR | AVFE
Oder-3Dec, | 100 | 20000 | 0.7 | 10533
f6 function 100 | 20000 | 0.8 | 10656
30-city TSP_ | 1000 | 100000 | 0.7 | —

population size. It should be noted that with
the DCGA, the optimum population size is
extremely small and good performance is ob-
tained with such a small population. This
indicates that if the structures are appropri-
ately distributed in the solution space, only a
small number of such structures are needed, and
similar structures are harmful for reaching the
global optimum.

According to the above, the DCGA seems to
be especially suitable for the TSP and problems
in which the global optimum is isolated as a
deceptive function.

5. Discussion

It is interesting how well the DCGA performs
in comparison with the leading existing meth-
ods. In previous research, however, the com-
putational conditions varied from case to case,
and some computational conditions and results
were not described. Therefore, although exact
comparisons of the performance are impossible,
the best results are described in the following
for the purpose of conjecturing as to the differ-
ences in the performance.

Table 11 shows the computational condi-
tions and the best results in 50 trials using
CHC for each of the problems '8, According
to these results, the DCGA remarkably outper-
forms the CHC for the deceptive functions and
the 30-city TSP. However, for the f6 function,
the latter is remarkably superior to the former.

Table 12 shows the computational con-
ditions and the best results when Srinivas’s
method was used for each of the problems?).
The numbers of trials was 30 for the first two
problems and 10 for the last problem. The kind
of order-3 deceptive function used was not de-
scribed. The string length of the order-3 decep-
tive function was 15. With the f6 function; an
approximate global optimum of 0.999 was used
instead of the exact global optimum. In the
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30-city TSP, the DCGA outperforms Srinivas’s
method.

In terms of Whitley’s method, the perfor-
mance described in the literature is as follows.
In the {6 function using the population size of
100, the number of 9’s below the floating point
almost presents a peak when the number of
function evaluation times is 4000 and the max-
imum value is smaller than 47, In the 30-city
TSP using a very large population size of 1000
and an MXFFE of 30,000, all the 30 trials con-
verged 19).

It should be noted that the optimum popu-
lation size in the DCGA is extremely small in
comparison with that in these previous meth-
ods. The salient feature of the DCGA is that
good performance is obtained with such a small
population size. In applications to practical
large-scale problems, the combination of a GA
and a local search algorithm is effective and effi-
cient. In such an algorithm, the DCGA has the
great advantage that the small population size
can reduce the computational time consumed
by applying the local search algorithm to each
structure in the population.

6. Conclusions

A salient feature of the DCGA is that the di-
versity of structures in the population can be
externally controlled so as to be in an appro-
priate condition according to the given prob-
lem. Within the range of the above experiments
on standard benchmark problems, the following
conclusions can be drawn. The methods em-
ployed in the DCGA are effective for attaining
the global optimum. The optimum population
size is extremely small and good performance
is obtained with such a small population. The
performance of the DCGA is remarkably supe-
rior to that of the simple GA. The DCGA may
be a promising competitor to the GAs proposed
in previous research. However, further evalua-
tion of the DCGA in other complicated bench-
mark problems is required before firm conclu-
sions may be drawn. In additional, theoreti-

cal analysis of the convergence process of the
DCGA is required.
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