BEHRAEFLL549E CPR 6 FEE) 2EKRE

1 —275

Improving End-to-End Throughput for FileTransfer

7C—6

Using Combined Layers

Onur ALTINTAS, Hitoshi AIDA, Tadao SAITO
The University of Tokyo

1 Introduction

Progress in the field of high speed
networking made Gb/s transfer rates available
which in turn, has lead to a debate in the research
community on the suitability of existing protocols
such as TCP/IP or the 1SO/OSI suite over high
speed networks [1]. The problem is that when
computers are connected to high capacity links,
the real bandwidth accessible by the system is
choked by the bottlenccks of the network
adapters, the ability of packet processing per
second, and the overall hardware and software
system structure. The present protocol
architectures scem sufficient for today's
networking requirements. However, demands of
future nctworks require some novelty in the
approach to current structures. In the rest of this
paper, we show some limitations of the classiccal
layering approach in comparison with the
capacity improvement that can be available
when things are handled according to the needs of
the applications.

2 Layering versus Performance

Layering, as an architectural abstraction, is
valuable in clarifying the roles of various
protocols, but experience suggests that layered
implementations are not perfect. from the point of
performance. At the lowest level, computer
communication networks provide unreliable
packet delivery. At the highest level,
application programs often need to send large
volumes of data. Network rescarchers have found
general purpose solutions to the problems of
reliable delivery , making it possible for experts
to build a single instance of protocol software that
all application programs usc. Having a single
general purpose protocol helps isolate application
programs (usually too much). from the details of
nctworking, and makes it possible to define a
uniform interface.

However, in most of the current protocol
designs, it is difficult to keep the application
layer running in real-time due to data loss or
reordering which prevents immediate processing.
Today's applications do not deal with packet loss
or reordering. Instead, lower layer protocols such

as TCP shoulder the burden of following the data,
and requesting retransmissions of the lost ones.
With TCP, presentation conversions (if any, since
some protocols simply avoid this) can occur only
after data is reordered and recovered meaning

_ that a lost packet stops the application.

3 Measurements on TCP/IP

In this section some experimental
performance evaluation results of bulk data
transfers over TCP/IP in the SunOS
implementation of Interprocess Communication
(IPC) using BSD sockets will be presented.

The performance measurcments were
conducted on a single Sun Sparc Station 10 with
SunOS Relecase 4.1.3. All mcasurements were
performed with a single user on the machine in
order to prevent interference. The only load on the
machines were the various system "housckeeping”
daemons consuming little processing power and
generating some background traffic occasionally
causing insignificant fluctuations in the system
behavior.

User
Process

application

transport

Interface | !
1

media

1
' | Mardware | ' ik
1
Ll

Figure 1. TCP/IP layering.

1276

The test programs using the UNIX socket
facilitics to access TCP/IP transferred 4 MBytes of
data from the scrver process to the client's user
memory space.

Throughput as the Performance Measure

The main point of interest of performance in
bulk data transfers is the throughput of the
transmission under a certain set of system
parameters. In our experiments, the throughput
measurements are perfromed for two
communicating processes running on a single Sparc
Station 10 communicating through the software
loopback. That is, instead of injecting packets into
the Ethernet, they are simply forced to loop back
to the receiving process. It is of no significance to
the protocol whether packets traverse the
Ethernet coming from a remote process or without
any Ethernet journey delivered from another local
process.

With end systems that are fast enough, even
under TCP, transfer rates close to the theoretical
limit of the Ethernet speed (1,155,063 bytes/sec)
can be attained. Any significant performance
improvements beyond the TCP rates are hard to
observe under Ethernet speeds. This is one reason
we used the software loopback to mcasure transfer
rates. Throughput was calculated as the average
delivery rate in bits per second.

100

(5/0) W

60
A

Ccr

l'ranster rate (Mb/s)

Figure 2. Comparison of data rates.

First, consider Figure 1. The three sets of
mcasurements in Figure 2 are taken first, for two
processes communicating through the reliable
strcam transfer protocol TCP; second, for the
unrcliable datagram scrvice UDP; and third, for
the dircct access to the IP protocol (which is again
unreliable in nature). Dircct access to the-IP layer
is possible by the use of raw sockets. That is, the
data accessed is "raw" indeed with only the IP
and Ethernet headers. Also, note that the results

for TCP shown in Figure 2 arc the transfer rate
values which are tuned preciscly by changing
socket buffer sizes of both processes.

4 Discussion

The raw capacity limited by the transport
layer is huge enough to make one reconsider the
pros and cons of layering. However, by saying this,
we do.not claim that the transport layer should be
abolished completely. Transport layer might
again have the responsibility of doing flow and
congestion control, while the application layer
doing error control according to its needs.

It is desirable to allow some manipulations to
be performed even when there is misordering or
loss. Taking action against data loss is dependent
upon the needs of the application. With the
classic approach of the transport protocol,
delivery will be suspended. Another option is the
application layer accepting imperfect data which
works for real-time delivery of vidco and voice.
Still another option is to have the application
dcal with lost data. In file transfers, for instance,
the receciver can copy the data into the correct
position (if some form. of identifying the data
units that application specifics is done) or simply
exploits the random access nature of disks,
without waiting for everything, in both cascs.

In short, we believe that, although laycring
is a useful approach; with current architectures,
too much emphasis is put on transparency,
generalization and isolation and that with
relatively smaller error rates of future networks,
strict check for every application may become
unnecessary. The ultimate way of handling things
in a networking application had better depend on
the context of the application data rather than
providing the same sort of services to every
application. At the time of this writing, protocol
implementations considering the ideas explained
above are under investigation.

References

{11 AN. Tantawy, cd., High Performance
Networks: Frontiers and Experience, Kluwer
Acadcemic Publishers, Massachusctts, 1994.

[2] D.D. Clark and D.L. Tennenhouse,
"Architectural Considcrations for a New
Generation of Protocols”, Proc. ACM SIGCOMM
‘90, Sept. 1990, pp. 200-208.

131 J. Crowcroft, J. Wakeman, Z. Wang and D.
Sirovica, "Is Layecring Harmful?", JEEE Network
Magazine, Jan. 1992, pp. 20-24.

[4] G. Conti, "RAP: A High Speed Protocol for
Random Access Devices", Int. Conf. on
Communications, ICC ‘92, June 1992, pp. 969-975.

