HRLFEFLH0E CFER 6 FRE) 2BXS

187

FHEERLA Y o FOIBETAT) X A

1P—-5

p s |

o,
FIFERE—+

(F) BICUWEDRSTEBIADT 4 H R THRAEEAMAT LR

1 Introduction

An nxm reconfigurable mesh (n x m-RM for short) is
a processor array that consists of nm processors ar-
ranged in a 2-dimensional grid of size n xm. Any two
adjacent processors are connected with alink, and the
internal connections between the four ports of each
processor can be configured locally during execution
of the algorithm. The connected components formed
by links and internal connections form subbuses. The
processors can communicate through subbuses. We
assume that all broadcasts through a subbus are com-
pleted in a unit of time, and a simultaneous broadcast
to the same subbus is allowed only if the sending val-
ues are the same. Recently, reconfigurable meshes
have attract considerable attention.

This paper deals with the problem to compute
the sum of n binary values and shows an efficient
algorithm on the reconfigurable meshes. This prob-
lem is very important because it is a fundamental
procedure that is used as a subroutine in lots of algo-
rithms, for example, sorting, arithmetic operations,
and so on. Several algorithms for summing n binary
values have been obtained. Olariu et al. [5] showed
an O(logn/logm) time algorithm on an » x m-RM
for all m (1 < m < n). One of the authors im-
proved this result and showed an O(log n/v/mlogm)
time algorithm on an n x m-RM for all m (1 <
m < log® n/loglogn) [4]. Chen et al. [1] showed an
O(loglog n) time algorithm on a \/n x /n-RM. Jang
et al. [2] showed an O(log™ n) time algorithm on a
V71 x /n-RM. Jang et al. [3] also showed a constant
time algorithm on a \/nlogn x /nlog n-RM.

We will show that for n binary values given to
processors on every /m rows, one binary value for
each processor, the sum of them can be computed in
O(log* n—log™ m) (1 < m < logn) time on a \/nmx
/7 RM. From this algorithm, a \/nlog!®® n x /n
RM is sufficient for constant time summing, and if
the number of processors is the same as that of the
input bits, the sum can be computed in O(log™ n)

A Summing Algorithm on a Reconfigurable Mesh

tKoji Nakano, Advanced Research Lab., Hitachi
Ltd., Hatoyama, Saitama 350-03, Japan

Koichi Wada, Department of Electrical and

Computer Engineering, Nagoya Institute of Technol-
ogy, Showa-ku, Nagoya 466, Japan

time. Therefore, our algorithm is an 1mprovement of
the previously known algorithms above.

2 Basic summing algorithm

This section reviews a basic summing algorithm for
binary values [4], which is used by the summing al-
gorithm in this paper.

For the first ¢ prime numbers, p1(= 2),p2(= 3),
oo Py, let p@ = py 4+ pa+ -+ py and p§ = py -
pa---pg. For given n binary values ag,ay,...,an_1,
let the remainder of them be = mod p;@, where z =
ag+a;+---+a,_1. The remainder can be computed
in O(1) time on a 2n x (p® + ¢)-RM as follows.

Imagine that the RM is partitioned into g subRMs
of sizes 2n x (p1 +1), 2n X (p2+1), ..., 2n x (pg+1).
In each ith subRM, the value of z mod p; is com-
puted using the prefix remainder algorithm [4] and
it is sent to the same subRM. In each 2jth column
of ith subRM, it is checked whether j = z mod p;.
Then, in each 2jth column, it is checked whether
j mod p; = 2 mod p; holds for all ¢. After that, the
minimum j such that j = z mod p; for all ¢, is com-
puted. For such j, j = mod p(}@ holds. Therefore,
the value of z mod p? can be computed in O(1) time.

Using the remainder algorithm above, we can com-
pute the sum efficiently. Let b; be the integer such
that b; = 1 i[the following two conditions hold: 1)
zmod p; = 0, for all j, ie, zmodpd = 0, and
1) a; = 1, otherwise, b; = 0. Then, z = (2 mod
pq‘z’) + (bo + by + -+ + bn_l)p(‘]@. Therefore, by re-
cursively computing the sum of bg, b1, -, bn_1, the
value of = is computed: after computing the sum of
bo, b1, ..., bn—-1, the multiplication by p? is computed
in constant time on a log n x log® n-RM because this
can be done by the multiplication of two log n-bit in-
tegers [2]. The addition to z mod p‘f’ can be done
in constant time on a logn x 1-RM. Hence, each re-
cursion can be completed in constant time. There-
fore, the depth of the recursion, O(log n/logp¥) cor-
responds to the computing time.

3 Summing algorithm

We will show a more efficient summing algorithm
based on the basic summing algorithm.

188

2n+1

2mk

,0,00,00 L2

JLLLY
PRI
LLLLLRY

OO0

Figure 1: Snake-like embedding

Pigure 1 illustrates the snake-like embedding of an
nk x m-RM in a (2n 4 1) x 2mk-RM. In the snake-
like embedding, a processor on the nk x m-RM corre-
sponds to a processor whose row iIs even and column
is odd on the (2n +1) x 2mk-RM. In the figure, these
processors are represented by thick circles, and the
connections for the embedding are also represented
by thick lines. The nk xm-RM is bent k—1 times, and
is partitioned into k£ segments, each of which corre-
sponds to consecutive 2m rows in the (2n+41) x 2mk-
RM.

Suppose that the remainder of nk (k < n) binary
values ag, ay, ..., a1 is computed on the snake-like
embedding using the algorithm m the previous sec-
tion. The nk binary values is given to the RM such
that n binary values are given to each segment, one
binary value for every two column (Fig. 1). That is,
the input is given to every 2m rows on the (2n+1) x
2mk-RM. Let ¢ be the maximum integer such that

;e+q < m. Using the remainder algorithm, it is easy
to compute z mod pg*’, and bg,by,...bpk—1, where z =
ag + ay + -+ + app-1, and each b; is defined in the
same way as the algorithm in the previous section. If
the sum of bg,by,...,b,—1 1s computed recursively,
the sum z can be computed in O(log(nk)/ log pP) =
O(log n/+/mTogm) time as shown in the previous sec-
tion. However, we can reduce the computing time by
compressing bg, b1, ..., bng-1-

Let ¢; = bj 0 +b;.50 41+ 041591
j< nk/p‘q8 1. Since at most one ofb @,bj p®+1’ o
_y is 1 for each j, the value of each ¢ is ei-

for 0 <

biit1ys?
ther 0 or 1, and its value can be determined in con-
stant time by the simultaneous sending. See Fig. 2
for an example in which a black circle denotes 1 and
a white circle 0, where n = 32, and p§ = 4. Al-
though 4 is an impossible value for pq®, the figure
shows the essence of the algorithm. For ¢;’s thus ob-
tained, z = (¢ mod p?)+(co +c1+-- '+an/p?—1)1’?
holds, because each ¢; with value 1 corresponds to p‘?
1’s in the input. Therefore, the value of z can also be
obtained by the recursive computation of the sum of
€0, Cly s Cpp/p@—1- In order to reduce the depth of

the recursion, for each 7, ¢jn, ..., ¢(j+1)n-1 are trans-

rororol d_
l.}loll-llc q
1 HE R ”i

o ¢ e o () (] o
Input to next recursion

Compression

[¢]

Figure 2: Summing algorithm

ferred to a row, one for each processor. For example,
€0,C1,"*+,Cn—1 15 transferred to a row as shown in
Fig. 2. After that, all of the ¢’s are distributed to ev-
ery Qmp‘q8 rows and the sum of ¢q, ¢y, ..., Crk/p®-1 18
computed recursively. Therefore, in the following re-
cursion, the sum of n.k/p;@ binary values is computed
based on the embedding of an nlc/pgD x mp®-RM in
the (2n + 1) x 2mk-RM. Using this technique, the
depth of the recursion can be reduced to O(log" n —
log™ m). Replacing n, m, and k by \/n, v/m and \/n,

we have

Theorem 1 Forn binary values given to every /m
rows of a \/nm x \/n-RM, the sum of them can be
computed in Oflog™n — log*m) (1 < m < logn)

time.
References
[11 Y. -C. Chen and W. -T. Chen. Reconfigurable

mesh algorithms -for summing up binary values
and its applications. In Proceedings of 4th Sym-
postum on Frontiers of Massively Parallel Com-
putation, pages 427-433. IEEE, October 1992.

(2] J.-W. Jang, H. Park, and V. K. Prasanna. A fast
algorithm for computing histograms on a recon-
figurable mesh. In Proceedings of 4th Symposium
on Frontiers of Massively Parallel Computation,
pages 244-251. IEEE, October 1992.

[3] J. -W. Jang, H. Park, and V. K. Prasanna. A
bit model of reconfigurable mesh. In Proceedings
of Reconfigurable Architecture Workshop. IEEE,
April 1994.

[4] K. Nakano. An efficient algorithm for summing up
binary values on a reconfigurable mesh. IEICE
Transaclions (Japan), E77-A(4):652-657, April
1994.

[5] S. Olariu, J. L. Schwing, and J. Zhang.. Funda-
mental algorithms on reconfigurable meshes. In
Proceedings of 29th Allerton Conference on Com-
munications, Control, and Computing, pages 811~
820, 1991.

