STAR-FACTORIZATION ALGORITHMS OF COMPLETE GRAPHS BY RBIB DESIGNS

1 P - 1

Kazuhiko USHIO

Department of Industrial Engineering Kinki University, Osaka 577, Japan

1. Introduction

Let S_k be a *star* with k vertices. Let K_k and K_v be a *complete graph* with k vertices and v vertices, respectively. Let K(m;k) be a *complete multipartite graph* with m partite sets of k vertices each.

Let G and H be graphs. A spanning subgraph F of G is called an H-factor if and only if each component of F is isomorphic to H. If G is expressible as an edge-disjoint sum of H-factors, then this sum is called an H-factorization of G.

2. Common Transversal Sets

We use common transversal sets on S_{κ} -factorization of K_{ν} and K(m;k).

Consider a set N of v elements, where v=kt. Divide N into t subsets $A_1,A_2,...,A_t$ so that they are mutually disjoint subsets of same size k. And divide N into another t subsets $B_1,B_2,...,B_t$ so that they are mutually disjoint subsets of same size k. Let T be a t-element subsets of N. Then T is called a *common transversal set* of $\{A_1,A_2,...,A_t\}$ and $\{B_1,B_2,...,B_t\}$ when it holds that $|T\cap A_j| = |T\cap B_j| = 1, 1 \le j \le t$.

Lemma 1. Let $\{A_1, A_2, ..., A_t\}$ be a mutually disjoint partition of N and $\{B_1, B_2, ..., B_t\}$ be another mutually disjoint partition of N. Then there exists a common transversal set T of $\{A_1, A_2, ..., A_t\}$ and $\{B_1, B_2, ..., B_t\}$.

3. S_k -Factorization Algorithms of K_v and K(m;k)

For $k \ge 3$, we have the following:

Lemma 2. An edge-disjoint sum of two K_{κ} -factors of K_{ν} can be factorized into k S_{κ} -factors.

Proof(by algorithm). 1: Let F_1 and F_2 be edge-disjoint K_{κ} -factors of K_{κ} . And let G be a sum of F_1 and F_2 . Then $V(F_1)=V(F_2)=V(G)=V(K_{\kappa})$.

- 2: Put $F_1 = K_{\kappa}^{(1)} \cup K_{\kappa}^{(2)} \cup ... \cup K_{\kappa}^{(t)}$ and $F_2 = K_{\kappa}^{(t+1)} \cup K_{\kappa}^{(t+2)} \cup ... \cup K_{\kappa}^{(2t)}$. And let $A_j = V(K_{\kappa}^{(j)})$ and $B_j = V(K_{\kappa}^{(t+j)})$, $1 \le j \le t$.
 - Then $\{A_1, A_2, ..., A_t\}$ is a mutually disjoint partition of V(G) and $\{B_1, B_2, ..., B_t\}$ is another mutually disjoint partition of V(G).
- 3: Let T_1 be a common transversal set of $\{A_1,A_2,...,A_t\}$ and $\{B_1,B_2,...,B_t\}$. Let T_j be a common transversal set of $\{A_1-T,A_2-T,...,A_t-T\}$ and $\{B_1-T,B_2-T,...,B_t-T\}$, where $T=T_1+T_2+...+T_{j-1}$ $(2 \le j \le k)$.
- 4: Consider 2k-2 subgraphs G_j of G such as $G_1=F_1$, $G_2=F_2$, $G_j=G_{j-2}-T_{j-2}$ ($3 \le j \le 2k-2$),

- where $T_{k+i} = T_{k-i+1}$ ($1 \le i \le k-2$).
- 5: Consider 2k-2 subgraphs H_j of G such as $H_j = G_j E(G_j T_j)$ $(1 \le j \le 2k-4)$, $H_{2k-3} = G_{2k-3}$, $H_{2k-2} = G_{2k-2}$.
- 6: Note that every component of G_j is a complete graph with (2k-j+1)/2 vertices (j:odd) or (2k-j+2)/2 vertices (j:even) and that every component of H_j is a star with (2k-j+1)/2 vertices (j:odd) or (2k-j+2)/2 vertices (j:even).
- 7: Then we can construct k edge-disjoint S_k -factors F_1 ', F_2 ', F_3 ,..., F_k of G as follows: F_1 '= H_1 , F_2 '= H_2 , F_j = $H_j \cup H_{2k-j+1}$ ($3 \le j \le k$).
- 8: Therefore, it holds that $G=F_1'(+)F_2'(+)F_3(+)...(+)F_k$, which is an S_k -factorization, where the symbol (+) is used to denote the sum of factors.

As a resolvable BIBD(v,b,r,k, λ =1) is just a K_k -factorization of K_v , we have the following lemmas.

Lemma 3. If there exists a resolvable $BIBD(v,b,r,k, \lambda = 1)$ (r:even), then K_v has an S_k -factorization.

Proof. Let $F_1, F_2, ..., F_r$ be edge-disjoint K_{κ} -factors of K_{ν} . And let G_i be a sum of F_{2i-1} and F_{2i} ($1 \le i \le r/2$). Then from Lemma 2, G_i can be factorized into K_{κ} -factors. Therefore, K_{ν} has an S_{κ} -factorization.

Lemma 4. If there exists a resolvable BIBD(v,b,r,k, λ =1) (r:odd, m=v/k), then K(m;k) has an S_k -factorization.

Proof. Let $F_1, F_2, ..., F_r$ be edge-disjoint K_k -factors of K_v . Then we can write as follows:

 $K_{v}=F_{1}(+)F_{2}(+)...(+)F_{r}=F_{1}(+)K(m;k)$, where $K(m;k)=F_{2}(+)...(+)F_{r}$.

Let G_i be a sum of F_{2i} nd F_{2i+1} $(1 \le i \le (r-1)/2)$. Then from Lemma 2, G_i can be factorized into $k S_k$ -factors. Therefore, K(m;k) has an S_k -factorization.

References

- [1] H. Enomoto, T. Miyamoto and K. Ushio, C_{κ} -factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- [2] K. Ushio, P_a -factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- [3] K. Ushio and R. Tsuruno, P_3 -factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385-387.
- [4] K. Ushio and R. Tsuruno, Cyclic S_{κ} -factorization of complete bipartite graphs, Graph Theory, Combinatorics, Algorithms and Applications (SIAM, 1991), pp. 557-563.
- [5] K. Ushio, G-designs and related designs, Discrete Math., 116 (1993), pp. 299-311.