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This paper proposes a principal component analysis (PCA) criterion whose optimization
yields the principal eigenvectors of the data correlation matrix as well as the associated eigen-
values. The corresponding learning algorithms are deduced for the unsupervised learning
of one-layer linear neural networks. The part of the algorithm that estimates the principal
eigenvectors turns out to be a version of the Sanger’s generalized Hebbian algorithm (GHA)
that enjoys adaptive learning rates and fast convergence. The proposed criterion differs with
the standard PCA criteria, such as Marimum Variance and Minimum MSE, in that a) opti-
mization of standard criteria results only in the principal eigenvectors, b) their corresponding
learning algorithm, namely GHA algorithm, has a fixed learning rate. Simulation results
illustrate the fast convergence of the derived algorithm.

1. Introduction

Principal component analysis is a widely used
statistical technique for reducing the dimen-
sionality of a data set, while retaining as much
variation of the data as possible. In PCA,
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that packs most of the signal energy in the
first few components and transforms correlated
input data into a set of statistically decorre-
lated features usually ordered according to de-
creasing information content. It originally ap-
peared in multivariate statistics literature and
has then been encountered in a wide range of
applications including data compression?) and
face recognition?.

The past decade has shown an increasing ef-
fort to implement PCA by means of neural net-
works. The motivation behind such an effort is
to relax the wide-sense stationarity assumption,
which underlies optimality of the PCA method,
and afford for an adaptive extraction of princi-
pal components (PC’s) which is able to account
for slow variations of source statistics.

In an influential paper® Oja introduced a lin-
ear neuron model with a constrained hebbian-
type learning rule and proved the conver-
gence of the neuron’s weight vector to the
first principal component. Sanger? extended
the algorithm to the multi-neuron case, follow-
ing a procedure similar to Gram-Schmidt or-
thonormalization, and showed the algorithm’s
ability to estimate principal components in a
decreasing order of eigenvalues. Kung and
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Diamantaras developed an algorithm which re-
cursively, rather than simultaneously, computes
the principal components®. The motivation
behind the algorithm is the need to extract the
principal components when the number of re-
quired PC’s is not known a priori. However,
tistical variations, the algorithm is not as effec-
tive as PCA algorithms such as GHA which up-
date all weight vectors simultaneously. Several
other PCA algorithms have since been reported
in the literature, among which we mention®?).

Recently, an optimization-based approach to
PCA has been getting attention in the neural
network society because it gives a mathemat-
ically sound formulation of the problem and
helps to understand the properties of the cor-
responding learning algorithms. Indeed, many
of the PCA learning rules and their modular
versions® are iterative algorithms which esti-
mate the principal eigenvectors by optimizing
standard PCA criterions®-10),

In this paper, we propose a PCA crite-
rion, hereafter referred to as Entropy Likeli-
hood (EL) criterion, which can be considered
as a crossbreeding between the likelihood func-
tion and the differential entropy of the data’s
marginal probability density function (pdf). As
compared to the maximum variance and mini-
mum MSE criterions , optimization of the pro-
posed criterion results in a couple of learning
algorithms which extract not only the princi-
pal eigenvectors but also the associated eigen-
values. The derived algorithm is a variation
of Sanger’s GHA which enjoys adaptive learn-
ing rates. This feature, which takes root in the



Vol. 40 No. 10

proposed criterion rather than being added in
an ad hoc way, leads to a speed-up in the con-
vergence of the GHA algorithm.

In Section 2, we first establish the correspon-
dence between the solution optimizing EL and
the PCA solution. After that follows the deriva-
tion of the stochastic gradient algorithms which
optimize the criterion. Simulations in Section 3
illustrate the effectiveness of the adaptive learn-
ing rates in speeding up the convergence of the
GHA algorithm. The paper finishes with con-
cluding remarks in Section 4.

2. Entropy-Likelihood Learning

Let the input = be an N-dimensional random
vector generated by the zero-mean multivariate
Gaussian distribution

1 1
f(:r, Em) = W exp {—ixTEx 1.'1]}
where ¥, stands for the data covariance matrix
which is assumed to be nonsingular with dis-
tinct eigenvalues Ay > Ay > --- > Ay. We be-
lieve that the assumption that the distribution
is Gaussian does not impose a significant loss
of generality because a) principal components
are defined by the second-order statistics and
do not depend on higher-order statistics, which
characterize non-Gaussian data, b) the derived
learning algorithm is identical, except for the
multiplicative learning rate, to the Sanger GHA
algorithm which does not assume Gaussianity.
2.1  Single-unit EL learning

A single linear neuron projects the N-
dimensional input space into the one-
dimensional subspace spanned by it’s weight
vector w. The probability density function of
the neuron output y = wT'z can be written as

T _ 1 (wTz)?
flw zyvy) = WGXP{— v }

(1)
where v,, denotes the variance of the neuron
output.

Consider the EL criterion defined as
J(w, Vw) = Ex [log f(me§ Vw)]' (2)

For a given normalized weight vector w, the
EL criterion is asymptotically equivalent to
the log-likelihood function associated with the
marginal pdf. More specifically, for a train-
ing set X = {x1,z2, -, zn} of statistically in-
dependent and identically distributed samples
from the input density function f(z;%,) we
have
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Jw,ve) = lim Zlog £(Xuiva)  (3)
Here L£(Xy;vy) dengtes the likelihood func-
tion of the marginal pdf (1) and X, =
{wPz1,wTza, -+ ,wlz,}. The Maximum Like-
lihood (ML) estimate for the variance of the
marginal pdf can thus be obtained by maximiz-
ing the EL criterion with respect to the param-
eter vy, i.e.,

yML - argn;axj(w,uw). 4)
Replacing v,, by w? %, w, we reduce EL to the
negative of the differential entropy'") of the
marginal pdf, and its maximization yields the
first principal eigenvector u; (see Lemma 1).
However, unlike the differential entropy, opti-
mization of the EL criterion, which has both w
and v, as its arguments, yields not only u; but
also the ML estimate of v, .

To optimize EL one can start with some ini-
tial estimate of these parameters and then up-
date them iteratively along the gradient direc-
tion of the objective function. This results in
the gradient algorithms

w(k +1) = w(k) — 7" (k) {Vu[J (w, vw)

+é(w v~ 1))} Q)

vu(k + 1) = vy (k) + 1 (k)
0
5 G
with gradients given by
Vo J(w, v) + g(wT“} - 1)

= Ey[—vy (I — wwT)zzTw] (7
—a—(—Z—;J(w,Vw) =E, Bmf{(wa)z - uw}].
(8)

In accordance with the common practice, the
expression for the Lagrangian multiplier at the
optimum is substituted in the gradient (7).
Employing instantaneous estimates of the
gradient vector (7) and the derivative function
(8) vields the following stochastic gradient al-
gorithms
w(k +1) = w(k) +n* (k)vy ' (k)
{I1 — w(kyw” (k))} zxaTu(k)
)
v (k + 1) = vy (k) + 0 (k) (k)
(" (B)i)? — ()} (10)

which are on-line versions of the batch algo-



3640 Transactions of Information Processing Society of Japan

rithms given above. Stochastic gradient algo-
rithms have the advantage of a low computa-
tional complexity at each iteration, and of a
simple implementation in software and hard-
ware, compared to algorithms using the true
gradient'®. We note that the learning algo-
rithm (9) is identical to the Oja’s single unit
PCA algorithm?®, except for the multiplicative
factor v !(k). The learning algorithm (10)
gives convergence to the variance of the data
projected on the weight vector. This can be
proved by rewriting Eq. (10) in the form of the
Robbins-Monro algorithm

vk +1) = v(k) - n(R)EF® (v(k)),

where £® (u(k)) = vy (k) — [wT (k)z)?, and
using the fact that Robbins-Monro algorithm
converges in the mean-square sense to the root
# of the regression function

p(v) = Ego[€" (v)]
= [ §'(W)F(E"v)dE”,

provided that Ek (k) = 00,22 1 n(k)? < oo,

and the regression function p¥{(v) satisfies the
conditions

My(v - 0)® < p*(v)(v — 0) < My(v - 6)°
and

Varle®(v)] = /Q -k P A e

< o? < 00,
where 0 < M; < M, < cot?),

Since p¥(v) = Eeu[€¥(v)] = (v — wTE,w),
the first condition is obviously true for M; =
M, = 1 and the second condition is true be-
cause Var[t*(v)] = Var[wTzaTw] = Var[y?]
and Var[y?] is a finite number due to the fi-
nite length constraint on w. Thus the algorithm
converges in the mean-square sense to u3Xzu;
as k — oo.

2.2 Multi-unit EL learning

Consider a neural network with M linear neu-
rons (1 < M < N). The network projects
the N-dimensional input space into M one-
dimensional subspaces spanned by the weight
vectors wi,---,wp of the network. The EL
criterion defined for the single-unit case can be
employed for each output neuron in the multi-
unit case. Regarding the variance of the ith

neuron output, the ML estimate is given by

A g S v). (1)

wq

Without imposing additional constraints, op-
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timization of EL leads to the same solution
for all the weight vectors. To induce the
weight vectors to different solutions, hierarchi-
cal orthonormality constraints are imposed on
the weight vectors: each weight vector is con-
strained to have unit length and to be orthog-
onal to the weight vectors of the neurons with
lower indices. We then get the following result.
Lemma 1. The first M principal eigenvectors
of the input data emerge as the optimal solu-
tion of the EL minimization problem with re-
spect tow; (¢ = 1,---, M) subject to the hierar-
chical orthonormality constraints, i.e., ||w;|| =
1 and wlw; = 0 for j < 1.

Proof: For w} to be a local minimum of
J(w;, 1y, ) subject to the hierarchical orthonor-
mality constraints, it is necessary that (w}, &)
be a stationary point of the Lagrange function

L(wg, &lvw,) = J(wiﬂ/wz)

+Z§z; w wy — ij)

where & = (&1, ,Em) is the vector of La-
grange multipliers. This yields fori =1,---, M
VwH-’\“’szl’/wz}i (wr,€5)
i1
= —vy ! Spw] + Z &5w;
j=1
0
66 L(wzagzlywz)l(wt 1)
for j=1,---,i. (13)
Multiplying Eq.(12) by wj " from the left
and using the constralnt glven in Eq.(13),

we  get & = Luplw;"S,w and o=
I/_le Y,wr for j # 4. Substituting

these back into Eq.(12),
Ej=1(wj Tewi)wj.
Using the hierarchical orthonormality con-
straints, it can be shown by induction that
Yowl = (w Zzw ywy, for ¢ = 1,---, M.
Therefore, wy is a normallzed eigenvector of X,
with the associated eigenvalue being equal to
the variance of the data projected on it. Now,
for a normahzed eigenvector u;, EL rewrites to
J(ui, vy,) = —3 log(2mA;) where \; denotes the
corresponding elgenvalue Since eigenvalues of
3; are never negative, it is clear that w; is the
eigenvector corresponding to the largest eigen-
value A1, wo is the eigenvector orthogonal to

yields Y w; =
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w; and corresponding to the next largest eigen-
value Az, and so on.

By the same argument as given in Section 2.1,
the first M principal eigenvectors and the vari-
ances of the data projected on them can be es-
timated by the following algorithms

= wi(k) + 0" (k)vg, (k)
(T i 1)
{ [1 = wjlk)w! (k) } } crzy wi(k)
j=1

(14)
V, (k + 1) = V’wi(k) + 77V'”i (k)V;?(k)

{[w] (k)ar]® — v, (K)} -
(15)

Learning algorithm (14) is identical to Sanger’s
GHA learning algorithm?®, except for the learn-
ing rates. Compared with the GHA algorithm,
which employs a fixed step size for the learning
of all the principal eigenvectors, the derived al-
gorithm adaptively adjusts the learning rates to
the spread of the data experienced in the learn-
ing of the corresponding principal eigenvectors.
In this way the algorithm tries to keep the same
convergence rates for all the principal eigenvec-
tors. This feature adds to the adaptive nature
of the GHA algorithm and, as is shown by simu-
lation studies, results in improved convergence
speed. The second part of the algorithm pro-
vides the information needed by the first algo-
rithm for adaptive adjustment of learning rates
and in turn is provided with the directions along
which data variances should be estimated.

3. Simulations

To evaluate the efficacy of the adaptive learn-
ing rate feature of the derived EL-based al-
gorithm against the fixed learning rate of the
GHA algorithm, we used both of these algo-
rithms to extract the first 2, 3, 4, and 8 prin-
cipal eigenvectors of a data set. The training
data were generated by randomly (according to
a uniform distribution over image indices) se-
lecting blocks of size 8 x 8 from an image having
a resolution of 512 x 512 pixels with a dynamic
range of 8 bit or 256 grey levels. Figure 1
shows the image used for training.

To insure convergence of the algorithm for
samples from various image data, we normal-
ized samples to have unit norm on average, i.e.
E[|X'||?] = 1. This was achieved by prepro-
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Fig.1

Image used for training

cessing samples according to , = (z; — ) /(n x
o) where u,o,n,z;, and :c; stand for the pixel
mean, pixel variance, block size, ith sample,
and the normalized sample, respectively. The
weight vectors w;’s were also randomly initial-
ized by drawing their elements from a uniform
distribution over (—1,1).

Preliminary experiments indicate
ing suitable learning rates was necessary to
achieve acceptable convergence speed. The
learning rate defined by n(k) = 1/(k + b),
b being a positive constant, is theoretically
known to give convergence, but this conver-
gence is generally slow due to the quick de-
crease of n’s value. We slowed this decrease
down by using a learning rate of the form
n(k) = 1/(c.k + b)" with constant b being just
large enough to induce stable learning for all
experiments, and constant ¢ being smaller than
1 to prevent a quick decrease of the learning
rate. To find a suitable value for b we in-
creased it in steps of 5 until a value giving
stable behavior was found. We limited the
possible choices for ¢ to members of the set
S. = {0,1074,1073,1072,10"1,1}, and set c
to that member that gave fastest convergence.
This way to set b and c resulted in b = 35.0,
¢ = 0 for the proposed algorithm and b = 15.0,
¢ = 0 for the GHA algorithm.

The improvement in convergence speed was
evaluated through a comparison of MSE learn-
ing curves of the El-based and GHA algo-
rithms. These curves were obtained by plot-
ting the mean square error, between the orig-
inal image and the image reconstructed from
the principal components, at every 200 samples

indicatad +that And_
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until convergence was achieved. At each epoch,
the reconstructed image was obtained by divid-
ing the image into nonoverlapping 8 x 8 blocks,
transforming these blocks by the current esti-
mates of the principal eigenvectors used in re-
construction, and then transforming them back
into image blocks.

Figures 2—5 show the learning curves of the
proposed and GHA algorithms for the first two,
three, four, and eight principal components, re-
spectively. Each point on these graphs rep-
resent an average MSE over 50 experiments
which was enough to obtain a sufficient statisti-
cal significance. As can be seen from the learn-
ing curves, the EL-based algorithm results in
fast convergence without sacrifying reconstruc-
tion accuracy. Also, the efficacy of the adap-
tive learning rates increases with the increase in
the number of principal components employed
in the reconstruction. Specifically, compared
to Sanger’s GHA algorithm the EL-based algo-
rithm gives about 3.0, 3.3, 3.9 and 4.3 times
faster convergence to respectively the first two,
three, four and eight principal eigenvectors.

4. Concluding Remarks

In this paper, we proposed a PCA criterion
and derived a learning algorithm that extracts
data’s principal eigenstructure. Unlike known
standard PCA criterions, EL optimization leads
to a variation of GHA algorithm which achieves
high convergence speed by reflecting the disper-
sion of data experienced by each neuron to the
corresponding learning rates. This feature over-
comes the slow convergence of the GHA algo-
rithm, particularly for low order principal com-
ponents.

We note that the adaptive learning rate
1“ [V, derived from optimizing the EL crite-
rion, is the same as the optimal learning rate
1/Muv,,,, which was proposed by Kung, et al.®)
in the context of the APEX algorithm, with
n“ = 1/M. Here M denotes the number of
input samples. They arrived at this optimal
learning rate by analyzing the eigenmodes of
the dynamic equations which governs the up-
date of the coefficients appearing in the expan-
sion of forward and lateral weight vectors in the
eigenvector coordinate system. Because of the
similarities in learning rates, both algorithms
would have very similar convergence. speed,
were not it for APEX’s mechanism of learn-
ing PC’s one by one, which additionally speeds
up its convergence, however, at the expense of
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Fig.2 Learning curves for the first two principal
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Fig.4 Learning curves for the first four principal
components.
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Fig.5 Learning curves for the first eight principal
components.

its adaptiveness for nonstationary data. More
precisely, for the recursive computation of each
additional PC, GHA ( and hence its variation
derived here ) requires (m+ 1)n multiplications
per iteration for the m-th neuron, as opposed
to 2(m + n — 1) multiplications per iteration
in APEX®, because APEX updates only the
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weight vector corresponding to the last neuron
and keeps the other weight vectors fixed.

The parametric approach presented in this
paper offers the possibility of merging the PCA
technique with other parametric methods in
pattern recognition in a uniform and seem-
less manner. Design of optimal classifiers in a
reduced-dimensional space presents such a case
where feature extraction and classifier design
can be merged together.
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