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On the X%-Definability of Integer Factoring

MiITSURU TADA' and HIROKI SHIZUYA't

In this paper, we introduce an approach to cryptology using bounded arithmetic, and we
investigate factorization. Factorization supports the security of many kinds of cryptosystems.
If it could be eﬂic1ently computed, then those systems would not be secure any longer. Since
functions that are 21 -definable in :Eo'1 are computable in polynomial time, it is a worthwhile
task to try to E -define the factormg function.
necessary to add some axiom to the theory S; 1 with respect to primality.

1. Introduction

The RSA system 1?) is one of the most popu-
lar encryption schemes. Like various other sys-
tems (e.g., Rabin, Williams, etc.) its security is
supported by the difficulty of factoring a given
integer. (See Okamoto®), etc. for several more
examples of such systems) Since the factor-
ing function used to break the systems above is
an operation to compute (p,q) from the input
a (= pq), not to compute the perfect factor-
ization ¢;* - - - ¢¢* from an arbitrary number a,
we call the first operation the factoring func-
tion. At first, the term factorization means the
problem of finding the pair of primes (p, ¢) such
that p-q¢ = n for a given number n if such
a pair exists. Later we will treat a few types
of factoring such as the operation a — (p,q)
for an input a (= p%q), which is necessary to
break other types of encryption systems, such
as ESIGN 2, the public-key cryptosystem in-
troduced in Okamoto and Uchiyama®. Any
ways of breaking RSA other than factoring the
given composite pg are unknown, where the
word breaking means finding a secret param-
eter from the public ones. In this paper, we
will study the X3-definability of such types of
factoring function.

The systems Si (i € N) of bounded arith-
metic are introduced in BussY. It is widely
known that the theory of bounded arithmetic
is closely related to computational complexity
theory. For a typical example, the main the-
orem of Buss Y relates S§ for i > 1 to FA?,
where FAP is the function version of AY in
the polynomial-time hierarchy. To be precise,
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At present, however, it turns out to be

if ¢ > 1, then the class of functions that are
b deﬁnable in S} exactly coincides with the
class FA?. In partlcular functions that are Zl
deﬁnable in S3 can be computed in polynomial
time, and vice versa. Hence the study of S}
is almost directly related with that of FP, the
class of all functions that are polynomial-time-

- computable.
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However, there does not seem to be an S3-
proof for X3-definability of the factoring func-
tion. We will therefore give the theory S3 some
axiom with respect to primality, which will be
named g, and which is unlikely to be proved in
S3. This means that we make S} more power-
ful than without p. Denote the extended the-
ory by S3 4+ p. We will £3-define the factoring
function in S§ + . In its proof, the added ax-
iom g is quite necessary; it can thus provide
some credibility to cryptosystems that rely on
the difficulty of factorization for their security.

In Krajicek and Pudlék®, it is shown that
(1,1)-type factoring is implicitly definable in
S3+®, that is, that if the existence condition of
(1,1)-factoring is provable, then its uniqueness
condition is also provable by the same theory.
The additional axiom ® denotes one direction of
Pratt’s theorem, and represents Pratt’s primes
as primitive primes. In this paper, however, we
will add Pratt’s theorem itself to the theory S3
in order to give proofs of both the existence con-
dition and the uniqueness condition for several
types of factoring functions. This means that if
Pratt’s theorem could be proved in the theory
S1, then those functions would be computable
in polynomial time.

This paper is organized as follows: In Section
2, we will review the fundamental definitions
and properties with respect to bounded arith-
metic systems. In Section 3, we will describe
two definitions for primality, one of which is
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constructed after Pratt’s theorem. Sections 4
and 5 will give ©}-definitions of the (1,1)-type
and (2, 1)-type factoring functions, respectively.
Section 6 will present various types of factoring
function and outline our future work.

2. Preliminaries

In this section, we review the construction of
the theory S, which is the instrument for our
purpose. First, we examine the definition of the
language of bounded arithmetic and the class
of bounded formulae ¥¢ and I1? (i € N). After
that, we examine the definition of the theory S
and its well-known properties. (See Buss ! for
details.)

The language of bounded arithmetic consists
of the constant symbol 0, unary function sym-
bols S, | *| and |*/2], binary function symbols
+, - and #, binary predicate symbols = and
<, logical connectives -, A, V and D, quanti-
fiers V and 3, and the auxiliary symbols (, )
and , (commas). Here S means the successor
function, that is, S(z) = z + 1; |x| means the
length of the binary representation of z, that
is, || = [logy(z + 1)]; and z#y means 2/=I1¥].

We call quantifiers of the form (Vz < t) or
(3z < t) bounded quantifiers. In a special case,
if t is the length of some term s, that is, t = |s,
then we call them sharply bounded quantifiers.
Quantifiers of the form (Vz) or (3z) are called
unbounded quantifiers. A formula all of whose
quantifiers are bounded is called a bounded for-
mula.

We define the class X to be the set of all
sharply bounded formulae. The class Hg is de-
fined to be the same set as ©§. The classes
% and II® (i > 1) are constructed analo-
gously to the usual arithmetic hierarchy. Thus,
bounded quantifiers and sharply bounded quan-
tifiers play the roles of unbounded quantifiers
and bounded quantifiers, respectively.

The inference rules in S§ are all of those in
LK (due to Gentzen) plus four inference rules
with respect to bounded quantifiers, also plus
Yt-PIND, which is of the form:

I, A(le/2]) — Afa), A

T, A0) — A(t),A
where a is a free variable not appearing in the
lower sequent, t is an arbitrary term, and A is
an arbitrary %2-formula. (However, we do not
use any induction rules in this paper.) The set
of axioms in S is called BASIC, and consists of
32 open formulae describing fundamental prop-
erties of functions and predicates in bounded
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arithmetic language.

One reason why the theories S§ interest us
so much is that they have a close relationship
to the polynomial-time hierarchy. To be pre-
cise, functions that are $%-definable in S} (see
below) belong to FA?, the class of functions
computable by a polynomial-time machine with
access to an oracle from ¥¥_,, the (i — 1)-th
class of sets in the polynomial-time hierarchy.
Furthermore, the converse also holds. By sub-
stituting ¢ = 1, we can show that functions
that are X3-definable in S} are polynomial-
time-computable, and vice versa.

Definition 2.1 Let i > 1. Suppose A is a
¥?-formula and that

Sk (va)(3y < t)A(=,y)
and

83 = (V) (Vy)(V2)[A(z, y) A Az, 2)

Dy =z

Then we say that S5 can £?-define the function
f such that (Ve)A(x, f(x)) is satisfied; that is,
the function f is 3:2-definable in S3. Here x
and (V) are abbreviations for (z4,...,z,) and
(Vx1) - - - (Vz5,), respectively. The notation S§ -
A means that the formula A can be proved in
S3.

We call the first and the second formulae
in the statement of this theorem the existence
condition and the uniqueness condition, respec-
tively.

Theorem 2.2 (Buss?) A function f is in
FA? if and only if the function f is $-definable
in S3.

This is a fairly noteworthy property, to be
sure, but it is quite inconvenient for us that
we have only a small number of languages to
discuss S3. This difficulty is resolved by the
next definition and theorem.

Definition 2.3 Let f be a new function
symbol. We define (f) and II%(f) to be sets of
bounded formulae in the language of bounded
arithmetic plus the symbol f. These sets of
formulae are defined by counting alternations
of bounded quantifiers, ignoring the sharply
bounded quantifiers, exactly as in the definition
of X% and II2.

Theorem 2.4 (Buss ) Suppose S} can
T%-define the function f. Let S(f) be the the-
ory obtained from S} by adding a new function
symbol and adding the defining axiom for f.
Then if i > 0 and B is a X2(f)-(or a II%(f)-)
formula, there is a B* € £t (or I1?, respectively)

~ such that Si(f) - B* «— B, where A « B is
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the abbreviation for (A D B) A (B D A).

With the aid of the above theorems and def-
initions, when we discuss Si, we can use the
symbols of any polynomial-time-computable
functions in formulae, and of course, in formu-
lae in induction axioms. Thus the symbols of
polynomial-time computable functions are used
without further comment.

3. Primality

In this section, we define the predicate of pri-
mality in two distinct ways. One is a primitive
definition, and the other is Pratt’s. Here we
regard predicates as total functions from any
string to {0,1}. First we try to define the pred-
icate of primality in Si. The well-known co-
NP-definition of primality is as follows:

(Vp < a)(Vq < a)[(a = pg)
D(=1V(g=1)
Let Prime(a) be this formula. On the other
hand, let Comp(a) be the predicate for judging
whether a is a composite or not, namely:
Comp(a) & (3p <a)(3q < a)|(a =pq)
ANp#1) Mg #1)]
= (I <a)(3g<a)la=pdg],
where z < y is the abbreviation for (z < y) A
—(x = y). We can easily get S I Comp(a) <
Prime(a). The predicate of primality is the
function that on input of a outputs 1 when a is
a prime number and 0 otherwise. We therefore
define the formula P(a,y) as follows:

(Prime(a) Ay = 1) V (—Prime(a) Ay = 0).
The theory S3 can then prove both the exis-
tence and uniqueness conditions. But we can-
not say that the predicate of primality is in
P, because the defining formula P(a,y) is not
known to be in E’{. The problem is that, since
Prime(a) is in I and —Prime(a) is in £, the
formula P(a,y) turns out to be in $§ N 15,
which is a larger class than £. What we can
say here is that the primality predicate is in
A}. Hence we need an NP-definition of pri-
mality. We therefore use Theorem 10.1 from
Papadimitriou ?:

Theorem 3.1 (Pratt”?)) A number p >
1 is prime if and only if there is a number
1 < r < p such that r»~! = 1(mod p), and
furthermore 7?~1/¢ % 1(mod p) for all prime
divisors ¢ of p — 1.

Pratt showed that the predicate for primality
belongs to NPNco-NP. By this theorem, as in
Krajicek and Pudlik?, we define the formula
C(p,w) as follows:

Dec. 1999

w=(g,P,q1,€1,W1,- - . ,qt, €, Wt)
g € (Z/pZ)* A gP~! = 1(mod p)
p—1= Higt g

(Vi < t)[g®=/% % 1(mod p)]

In the formula above, since t is bounded by
the length of p, the quantifiers are essentially
sharply bounded. The NP-definition of primal-
ity Pratt(a) is (3w < t(a))C(a, w) for some suit-
able term t(a). Note that Pratt(a) is in X8, but
that —Pratt(a) is not known to be in X%, so the
¥:%-definition of primality is not yet completed.
We now define ® to be the formula
(Vz)[Pratt(z) D Prime(z)]. On the other hand,
we denote the converse of ® by ¥. Thus the
equivalence between Pratt(a) and Prime(a) can
be represented by ® A ¥. Pratt showed that ®
and ¥ hold, but it is conjectured that the the-
ory S3 can prove neither ® nor ¥. We therefore
denote Pratt’s theorem by p (< ® A ¥).

4. Factoring (1,1)-Type Composites

Many cryptosystems such as RSA, Rabin and
Williams rely upon the difficulty of factoring an
integer given at random. Therefore, if a factor-
ing function were included in FP, those systems
would no longer be secure. To break the sys-
tems, we do not need perfect factoring such that

a— (ph'“ » Pty €1, - ..,Ct),
where a = [[;_; p{*, each p; is a prime and e; >
1 for each i. Hence we hereafter call the follow-
ing operation the (1,1)-factoring function.
(p,q), if a is the product of two
primes p and g;
¢, if a is the product of p
and ¢ but at least one
of them is a composite;
c2, if a is a prime,
where (p,q) is the sequence number of a se-
quence (p,q) defined in Buss?'), and where c;
and ¢y are distinct constants. We denote this
(1,1)-factoring function by Fact(y 3).

Here we try to E'{-deﬁne the function Fact(y 1)
with bounded arithmetic language. Since @ or
T does not seem to be proved in Sj as men-
tioned in the previous section, we consider the
theory S3 + p, which is obtained by adding
Pratt’s theorem as an axiom to the theory S3.
We can define the defining formula F{; 1y of
Fact(;,1) as follows:

>> > >

a—
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((u,v < a) A (a = wv)) A Pratt(u. v) — ((u, v < a) A (@ = uv)) A Pratt(u, v)

((u,v < a) A (@ = uv)) A Pratt(u, v) — F(’l,l)(a,y’)

((u,v < @) A (a = wv)) A Pratt(u, v) — F(1,1)(a,y")

((w,v < a) A (& = uv)) A Pratt(u, v) — (3y)F(1,1)(a,y)
Fig.1 Proof in Theorem 4.2.

Fay(a,y)
& (3p,q < a)|(a = pq) A Pratt(p, q)
/\(y = (min(p, q)’ max(p, ‘I)>)]
V(3p, g < a)[(a=pg) A ~(Prime(p, q))
Ay = c1)]
V(Pratt(a) A (y = ¢2)).
Here Pratt(p, q) is the abbreviation for Pratt(p)
A Pratt(q). In Krajicek and Pudldk?®), it is
shown that the uniqueness condition of Fact(;, 1)
is proved in the theory S3 + ®.

Theorem 4.1 (Krajicek and Pudlik )
The theory S} + ® proves the sequent

Pratt(p,¢,7',¢'),p < q,p' < ¢,
a=pg,a=p'¢ op=p' Ag=7.

By means of the next theorem, we can show
that the (1, 1)-factoring function Facty 1) is xb.
definable in S} + p.

Theorem 4.2 The existence condition of
Fact(y,1) can be proved in S3+ .

Proof.
First, we prove the following sequent in S3:
—Prime(a) — (Jy)F1,1)(a, y)-

This proof is constructed as Fig.1l. In the
proof, a double-underline means that several in-
ference rules are applied. Here 3y’ is the term
(min(u, v), max(u,v)), (u,v < a) are the abbre-
viations for (u < a) A (v < a), and Fj(a,b) is
the following formula:

(3p < )(3q < a)|(a = pg) A Pratt(p, q)

A(b = (min(p, q), max(p, 9)))]-
Note that we have used the fact S3 - (Iz <

t)A(z) & (3z)[(z < t) A A(z)]. By almost the
same proof, we can demonstrate that the fol-
lowing sequent is proved in S3:
((u,v < @) A (a = uv)) A —Pratt(u, v)
- (Hy)F(m)(a,y)-

Hence S} can prove —Prime(a) — (Jy)F1 .1
(a,y), since Comp(a) = —Prime(a).

Next we prove that the sequent Pratt(a) —
(Fy)F(1,1)(a, y) can be proved in S3. This proof
is quite simple:

Pratt(a) — Pratt(a)
Pratt(a) — Pratt(a) A (c2 = ¢2)
Pratt(a) — F(1,1)(a, c2)
Pratt(a) — (3y)F(1,1)(a,y)

Hence S} can prove the sequent —Prime(a) V
Pratt(a) — (3y)F1,1)(a,y). Since ¥ asserts
—Prime(a) V Pratt(a), the theory S3 + ¥ can
prove (3y)F(11)(a,y). From Parikh’s theo-
rem Y, for some term #(a), S3 + ¥ can prove
(Jy < t(a))F1,1)(a,y)- =

We now have the uniqueness condition (Theo-
rem 4.1) and the existence condition (Theorem
4.2), and can therefore obtain the next corol-
lary:

Corollary 4.3 The (1,1)-factoring func-
tion Fact(y,1) is X5-definable in S} + p.

5. Factoring (2,1)-Type Composites

In the previous section, we discussed factor-
ing that is the mapping a — (p,q), where a is
the product of two primes p and ¢. Since RSA,
Rabin, etc. have n (= pq) as a public key and
(p,q) as secret keys, it is quite significant to
investigate the function Facty,1).

In this section, we consider the case of an
attempt to break ESIGN, which is introduced
in Fujioka, et al. ?). Here we say that ESIGN is
broken if the secret keys p and ¢ are obtained
from the public key n (= p%q). Thus we need
to investigate the function Fact(y 1y which is the
mapping a — (p,q), where for two primes p
and ¢, a is the product of two p’s and ¢, that
is, a = p’q. As well as Fact( ), we try to
¥8-define the function Fact(2,1) in the theory
S3 + p.

The defining formula of Fact(z 1), F(2,1y(a,y)
is given by:

F, (2,1) (ax y)
< (3p,9<a)|(a=pg) AR(p) APratt(y/p, q)
Ay = (min(,/p, ¢), max(y/p, 9)))]
V(3p,q < a)[(a = pg) AR(p)
A-Prime(/p,q) A (y = c1)]
V(3p, g <a)[(a=pg) A\R(p) A (y=c2)]
V(Pratt(a) A (y = ¢3)),
where ¢;, ¢z, and c3 are different constants,
R(a) is the predicate for judging whether a is
a square of some polynomial-time-computable
number, that is X3-definable in S}, and /%
is the polynomial-time-computable function for
obtaining the integer part of the square root of
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(u,v < a)A(a=uv) A R(u)/A Pratt(y/u,v) —
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(u,v < a) A (a = uv) A R(u) A Pratt(y/u,v)

Ala,u,v) —

(u,v < a) A (a = uv) A R(u) A Pratt(y/u, v) A (M(vu, v)

= M(vu,v))

Ala,u,v) —

(3p. g < a)[(a = pg) A R(p) A Pratt(y/p, ¢) A (M(vu,v) =

M{vP. 9))]

A(as u, ’U) - F(Z,l)(a’v M(\/E’ U))

A(a» U, V) — (Hy)F(Zl) (a$ Y)
Fig.2 Proof in Theorem 5.3.

the input. To be precise, R(a) & a = (va)2.
F(g,1) is thus a T8-formula.

To Zl—deﬁne the function F{3 1y, we have to
show that S} + p can prove both the existence
condition and the uniqueness condition. The
uniqueness condition is obtained by improving
Theorem 4.1 slightly.

Theorem 5.1 The theory Si+® proves the
following sequent:

Pratt(p,q,7,p',¢',7"), p<q<r,p'<¢'<r’,
a=pqr,a=p'qr
- =N g=d)A(r=r),
where Pratt(p, q,7,9’,¢,7') is the abbreviation
for Pratt(p) A Pratt(g) A Pratt(r) A Pratt(p’) A
Pratt(q’) A Pratt(r’).
Proof.
First, we show that Si proves the sequent
Pratt(p) A (plabe) — (pla) V (plb) V (ple). As-
sume that Pratt(p) and plabc, but that p does
not divide a or b. Let gcd(z,y) be the greatest
common divisor of x and y, which is efficiently
obtained. Then gcd(a,p) must be equal to 1,
and hence we get
pu+av=1,
for some u, v, and so also
pubc + avbe = be.

Since plabe, p divides the left-hand side and
hence p|bc. Furthermore, gcd(b, p) must also be
equal to 1. Therefore we can get p|c in a similar
manner.

Let pgr = p’¢'r’. Then p|p'q’r’ and from the
statement before, p|p’, plg’, or p|r’. The same
holds for ¢ and r. Therefore, from the assump-
tions p< g <randp <¢ <7/, wegetp=yp,
g=q¢ andr=r'. [ ]

Similarly, we can show the following corol-
lary:

Corollary 5.2 Let ¢ be a constant. Then
the theory S} + @ proves the sequent:

Pratt(pl’ s 7p(:7p,1) e ,Pé),Pl <--- Spm
Py <---<pl,a=p1- pc,a /Ry A

= (P1 =P A A(Pc =pc)-
Theorem 5.3 The functlon Fact(y 1) is -

definable in S} + p.
Proof.

The uniqueness condition is proved by the pre-
vious theorem. We have only to show the ex-
istence condition of Fact(y 1), whose proof can
be constructed in almost the same way as in
the case of Fact(; ;) as Fig.2. In that proof
tree, A(a,s,t) and M(s,t) denote the formula
(s,t < a) A (a = st) AR(s) A Pratt(+/s,t) and
(min(s, t), max(s,t)}, respectively.
Similarly, we can show that S can prove the
sequents:
(u,v < a) A (a = uv) AR(u)
A-Prime(y/u,v) — (3y)F2,1)(a, ),
(u,v < a) A (a = uv) A —R(u)
- (Hy)F(Zl) (a’vy)v
and

Pratt(a) — (3y)F(o, 11(‘1 'Y)-

We can show that S; proves —Prime(a) V
Pratt(a) — (3y)F(2,1)(a,y). The added axiom
¥ asserts —Prime(a) V Pratt(a), and hence we
can conclude that S3 + ¥ F (Jy)Fp.1)(a,y).
From Parikh’s theorem, for some term t(a),
S5+ ¥+ 3y < t(a))Fz,1)(ay)- L

We can easily see that the functions Fact(; 1)
and Fact(3 ;) can also act as the predicates for
primality, and that neither ® nor ¥ is neces-
sary to %8-define Fact(; 1y or Fact(py) in S2.
In that case, the only result we can get is
that Fact( ;) and Fact(z 1) are in FA}. Ac-
tually, they are in FP*1 [wit, O(logn)], where
FPZ1[wit,O(logn)] is the class of multivalued
functions f computable by a polynomial-time
witness-oracle Turing machine such that (1) on
an input of length n the machine makes at
most O(logn) oracle queries, (2) the witness-
oracle has the form (3y < t(a))R(a,y) with
R € A%, and (3) on an input z the machine out-
puts some y such that f(z) = y. Furthermore,
from the uniqueness of factorization, Fact(; 1)
and Fact(y 1) are NPSV functions (single-valued
functions computed by nondeterministic poly-
nomial time-bounded transducers) Therefore
we can conclude that they are in the intersec-
tion of NPSV and FPZt [wit, O(logn))].

We use ¥ to make the formulae F; ;) and
F(31) belong to %%, and we use ® to prove
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the uniqueness of F(; 1y and F(g 1. If p could
be proved by S} itself, then by Buss’ theo-
rem Y, there would exist polynomial-time al-
gorithms for computing the functions Fact; 1y
and Fact(y ). We can see the ordinary proof of
p in Ref. 7), whereas it must be quite difficult to
give its proof in the theory Si. Recall that the
function symbols we can use in proofs in S are
restricted to those in FP, but that some symbols
of functions not known to be in FP appear in
the Pratt’s proof of Pratt(a) « Prime(a). Thus
many cryptosystems based on the difficulty of
integer factoring are still kept secure, and if
Pratt’s theorem could be proved in Si, then
the security of those systems would collapse.
This provides some credibility to the security of
many cryptosystems in the past, present, and
future.

6. Generalization of Factoring Func-
tion

We have seen that both of the factoring func-
tions Fact(; 1) and Fact(y q) are Tb-definable in
the theory Si + p. In other words, if Pratt’s
theorem could be proved in S}, then these func-
tions would be computable in polynomial-time.
This implies that many kinds of cryptosystems
whose security relies upon the difficulty of com-
puting these functions could be broken. Here
the word ‘break’ means finding the secret keys
from the public key(s). In this section, we ex-
tend these functions so that they can be applied
to many kinds of composites.

6.1 Factoring (k,,k;)-Type Compos-

ites

First, we consider factoring a of the form
p’fl p’;’, where p; and pp are primes and k;
and ky are constants. We call this function
Fact(x, k,), and let Fig, r,) be its defining ax-
iom. By improving F{s 1), we can easily define
Fller )

Flky ko) ©
(3p,q < a)[(a = pg) A (Rk, (P) A Ri,(9))
APratt( &/p, %/q)
Ay =(min( &/p, %/q), max( /P, %%/7)))]
V(3p, q < a)[(a = pg) A (R, (p) A Re,(9))
A-Prime( &/p, %/q) A (y = c1)]
V(Ep, q<a)[(a'=pq) A _'(Rkl (p) A sz (q))
Ay = c2)]
V(Pratt(a) A (y = c3)),
where ¢, ¢y, and c3 are distinctive constants.
The predicate Rg(a) is defined as
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Ri(a) & a = (Ya)k.

Here {/a means the integer part of the k-th
root of a. Since {/* is an FP function, the
predicate Ry is in P. Then F, x,) is a Z%-
formula. The existence condition is proved in
almost the same way as Theorem 5.3. The
uniqueness condition is obtained from Corol-
lary 5.2 by ¢ = k1 + k2. Therefore the function
Fact(k, x,) is £3-definable in S} + p.

6.2 Factoring (1,1,1)-Type Compos-

ites

Here we consider factoring a of the form pgr,
where p, ¢, and r are primes. This is the general
case of factoring (2, 1)-type composites. We call
this function Facts instead of Fact(y 1,1). (Thus
we may say Fact instead of Fact(;1y.) The
defining formula of Facts, F3 is defined as fol-
lows:

F: 3 ((I, y) <

(3,9 <a)(3p1, P2 <p)[(a=pa) A(p=p1p2)

APratt(p1, p2) A Pratt(q)

/\(y=(min(pl,pg,q),mid(pl,pz, q)y

max(phpz,q)))]

V(3p,g<a)(3@p1, p2 <p)[(a=pg) A(p=p1p2)

A-Prime(p1, p2) A Pratt(g) A (y=c1)]

V(3p,9<a)(3q1,¢2<q)[(a=pa) A(¢=a12)

APratt(g1, g2) A Pratt(p)

Ay = (min(p, q1, ¢2), mid(p, q1, ¢2),

max(p, q1, q2)))]

V(3p,¢<a)(Ea, 92 <9)[(a=pa) A (4=4192)

A—Prime(q1, g2) A Pratt(p) A (y = a1)]

V(3p,q<a)|(a=pg) A Comp(p,q) A (y=c1)]

V(3p,q < a)[(a = pq) A Pratt(p, 9)

A(y = {(min(p, g), max(p, q)))]

V(Pratt(a) A (y = ¢2)),
where mid(a, b, ¢) is the second maximum value
of (a,b,c); that is, for example, if a < ¢ < b,
then mid(a,b,¢) = c.. Since mid is an FP
function, F3 is in $%. The formula (Jy <
t(a))Fs(a,y) is proved as well as Fiy 7). The
uniqueness condition is obtained by Theorem
5.1. Thus the function Factz is $3-definable in
S3+p. As we can easily guess, the performance
of Factz includes that of Fact(; ;) and that of
FaCt(gyl).

For a constant ¢, we can also Y¥.3-define the
function Fact., which is the mapping a —
(p15---,Dc), where a = py---p. and p1,...,Pc
are primes. If we let F, be the defining for-
mula, the number of lines of F, increases ex-
ponentially with respect to ¢, but since ¢ is a
constant, we can define it.
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6.3 Further Generalization and Open
Questions

We have seen that factoring functions of the

forms: '
a+ (p,9),
where a = pq, and p and g are primes,
a—(p,q), _.
where a = p?q, and p and q are primes,
a— <p1,' .. apc),
where a = p; - - - pc, each p; is prime,
and where c is a constant,

are all X8-definable in S} + p. At present, it

is not clear whether Pratt’s theorem can be

proved in Si. Here we try to define functions
for factoring other types of composites.

First we consider the (e, e2)-factoring func-
tion Fact(e, c,), where e; and e; are not always
constants. Before we define it, we need the fol-
lowing algorithm.

Algorithm 6.1 This algorithm computes
the predicate Ppow(e,a) and the function
fpow(e, a), which recognizes if a = p® for some
p, and finds p such that a = p®, respectively.
Input: e, (where 0 <e < lal), a.

Step1l: m—a;n~1.

Step2: n—n+1;b<— n™(modm);p~—
ged(b — n, m).

Step 3: If (p # 1) A(p® # a), then m — p and
go back to Step 2. If (p £ 1) A (p® = a),
thend — 1. If p=1, thend «— 0.

Output: d, p.

Note that modular powering (a,b,c) —
ab(mod c¢) is polynomial-time-computable, and
that p® in Step 3 is also, because e is bounded
by a length |a|. Thus Ppow(e,a) is 1, if there
exists some p such that p¢® = a, and then
fpow(e,a) = p. Otherwise, Ppow(e,a) is 0, in
which case fpow(e, a) can be defined arbitrarily.
By using these P-predicate and FP-function, we
can define Fle, ), which is the defining formula
of the function Fact(e, c,), as follows:

F(e1,e2)(aay) a4

(3p, 4 < a)(3ex < |p|)(3e2 < |g])[(a = pg)
A(Ppow(e1,p) A Ppow(ez,q)
APrime(fpow(e1, p), fpow(ez, q)))

A(y = (prW(Cl 7?), prW(ez, Q)s €1, ez))]
V(3p,q < a)(Ver < [p|)(Vez < |q)[(a = pg)
A-(Ppow(ei, p) A Ppow(ez, q)
APrime(fpow(e1, p), fpow(ez, @))) A (y=c1)]
V(Prime(a) A (y = ¢2)).

Of course, we can make this formula be-
long to % by using ¥. Similarly, we can de-
fine the defining formula Fi, . ) of the func-
tion Fact(e,, .. such that Facte,  ..)(a) =

Dec. 1999

(p17 <3 Dey €150 - ’eC>7 where a = pil o 'pzcv
p; is prime and e; > 0 for each ¢, and c is
a-constant. Then the existence condition of
Fact(e,,....c.) is proved in S3 + U, even if we
translate the formula above into a ¥b-formula
by using Pratt. Note that the uniqueness con-
dition is not yet completed. Unlike the pre-
vious factoring functions, this type factoring
does not declare the number of prime factors
of a given input. Remember that for each func-
tion we have given, the number of prime fac-
tors of an input is always fixed. But for the
function Fact(,, ... e.), it is not. This makes
the uniqueness condition a little troublesome
to prove in the theory S} + p. We therefore
leave it as an open question. What we can
demonstrate in this way is that the above func-
tions are in NPSVNFPZi [wit, O(log n)]. If the
uniqueness condition is proved in S} + p, then
it follows that these functions are X%-definable
in S3 + p. Furthermore, if Pratt’s theorem
could be proved in S}, then by Buss’ theorem
we could get a polynomial-time algorithm for
computing these functions, in which case the
security of many cryptosystems would collapse.
Although it remains an open question whether
Pratt’s theorem can be proved in S}, it is con-
jectured that it cannot.
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