Vol. 40 No. 12

Regular Paper

Transactions of Information Processing Society of Japan

Dec. 1999

GA-based Task Allocation by Throughput Prediction

Yo1CHI AOYAGI,t MINORU UEHARA,!* HIDEKI MORI't
and AKIRA SATOf

Recently, multimedia data processing dealing with audio and visual data and various com-
binations of such data is gaining importance. In such multimedia processing, data streaming
is utilized by pipelined parallel processing on successive data flow computations such as data
compressions, data expansions, effect processing and so on. With this background, high
throughput task scheduling for software oriented pipeline processing is expected. Scheduling
issues are classified into allocations of tasks to processors, and deciding the appropriate ex-
ecution orders of tasks. As there are so many solutions, these issues are called an NP hard
problem. In this paper, a static task allocation method for stream-based computations using
a Genetic Algorithm (GA) is proposed. In our proposed method, in order to find global so-
lutions efficiently, a list-scheduling algorithm and a GA are adopted, and both are combined
together. Finally, we show that our proposed method gives better allocation results compared

with a conventional CP/MISF method.

1. Introduction

In task allocation, there are many possibili-
ties for allocating tasks to processors and the
execution orders of tasks. Therefore, it is
difficult to find the optimal solution. Previ-
ously, list scheduling algorithms such as a CP
(Critical Path) method and a CP/MISF (Crit-
ical Path/Most Immediate Successors First)
method? . have been proposed. If tasks are
cyclical, these scheduling methods are not suit-
able, because critical path analysis of tasks is
utilized. With task allocation, it is difficult to
find the optimal allocation, because there are
enormous combinations of allocations, this is
known as the NP-hard problem. The possi-
ble task allocation patterns for a computation
increase enormously as the number of proces-
sors and the number of tasks increase, there-
fore it is difficult to decide the most suitable
allocation pattern. In this paper, we propose
a static task allocation method using a genetic
algorithm (GA), and name it the GA-Knapsack
method?)?), This method treats the list of list-
scheduling as a gene, and performs static allo-
cation.

This paper consists of following sections. Sec-
tion 2 describes related works on task alloca-
tions and GA. In Section 3, the stream-based
computing model?, which is suitable for stream
processing and easy for task analysis, is pro-

1 Annex Information, Inc.
11 Department of Information and Computer Sciences,
Toyo University

4309

posed. A stream computing model??) featur-
ing high speed communications demonstrates
its ability best in a distributed memory environ-
ment. In Section 4, we propose a task allocation
method using greedy knapsack approach. In
Section 5, we propose a practical task allocation
method which combines a Knapsack algorithm
and a Genetic Algorithm. In Section 6, we eval-
uate our GA-Knapsack algorithm by comparing
it with a conventional CP/MISF method.

2. Background

Task allocation algorithms are classified into
a static method and a dynamic method®®),
The static allocation method features schedul-
ing performed in advance of task operation,
such as a compile time. This is useful for a
no conditional branch case (basic block). How-
ever, the static allocation method is not prac-
tical, in the case where a conditional branch
is included, because it is not predictable at
compilation time. On the other hand, the dy-
namic method features scheduling performed
during the execution period of task operations.
Generally speaking, it is not suitable in the
case of fine-grained processing such as instruc-
tion based operations, because increased over-
heads exist. Therefore, the static method is
suitable for our streaming operations. Previ-
ously, list scheduling-based or heuristic-based
task scheduling methods have been presented.
Conventional list-scheduling is as follows.” The
order for allocating tasks is registered in a list
table. When any processor becomes free, then
a new task is extracted from the top of the

4310 B Transactions of Information Processing Society of Japan

Fig.1 The stream-based computing model.

list table. The CP/MISF? is a typical method
based on list scheduling algorithm. In this pa-
per, CP/MISF and our proposed GA-Knapsack
method are compared and evaluated. In addi-
tion, a task allocation on cyclic tasks such as a
streaming operation is discussed.

As a cyclic task analysis model, Mars (a
Maintainable Real-time System)”) has been
presented. Mars consists of cyclic tasks where
tasks are executed in certain cycles. At the
stage of task analysis, the execution timing of
real-time tasks is adjusted by the time edit-
ing operations implemented by the text editor.
Global timing adjustments are made possible
by setting the temporal execution period to a
code part.

In our paper, in order to search for solutions
globally, GA are utilized. The GA takes a hint
from the theory of biological evolution, in that
it can be used for random sorting, learning and
optimization. This is utilized for problems such
as placing parts effectively in limited space and
limited time. A typical example is the VLSI
layout problem. The evaluation function to rep-
resent fitness is a key factor in GA.

3. Stream-based Computing Model

We have proposed a stream-based computing
model, which is suitable for data streaming®,
pipeline processing and so on. In this section,
we describe this model.

3.1 Definition of Basic Model

First, we show conceptual definitions of the
basics of the stream-based computing model
in Fig. 1. This model allows simultaneous to-
kens on one stream as communication chan-
nels. And the sequence of each token’s arrival
will be preserved and guaranteed. Figure 1
is an example of stream-based computation,
where computation “3 + interval(1,10,1)” is
performed. The task “interval(1,10,1)” gener-
ate data “1,2,...,10” periodically. Task “add”

Dec. 1999

Task Loop

<In,Out,Behav,Cp>

Wait for next cycle

In ports Out ports

Inl Out1
LTS -
m_~7 = out
m n

(1) Input from Ip ports

sk executi

(3) Output to Qut ports

Fig. 2 Structure of a task.

performs “+” operation between constant data
3 and output data from the task “interval”.
Then the result “4,5,...,13” is displayed on
the monitor. A data path between two tasks is
called a stream. Tasks and streams are repre-
sented in a graph, where a task is shown as a
node, and a stream is shown as an arc.

3.2 Task .

A task in the stream-based computing model
is a concurrent object which communicates
with other tasks via streams. The task has
two kinds of ports, one is for input, the
other is for output. Streams are linked to
those ports. In this model, a task is com-
posed of one or more primitive tasks. The
metrics model of a task is represented as
{In,Out, Behav,Cy), and the structure of a
task is shown in Fig. 2, where Inq,...,In,, are
the input ports, Outy, ..., Out, are the output
ports (m,n are number of input ports and out-
put ports), Behav is the behavior of the task,
and C), is the processing cost of the task.

The behavior of a task consists of one ini-
tialization part and one loop part shown in
Fig.2. The loop part consists of the following
sequence:

(1) Waiting period for next cycle.
(2) Input from In ports.

(3) Body of task execution.

(4) Output to Out ports.

3.3 Stream

A stream is defined as a communication path
from an Out port to an In port. A stream is
represented as one input and one output which
are connected to tasks’ ports. A stream has the
following features:

e It is easy to analyze because communicat-

ing tasks are fixed.

e The order of tokens in a stream can be

guaranteed.

Vol. 40 No. 12

e It is easy to optimize the granularity of

communication by tuning buffer size.

Generally, it is difficult to predict the size of
tokens in a stream. In our model, however, con-
nections between tasks are statically given, and
communications are realized by flowing a con-
stant size of data continuously, so it is easy to
estimate communication cost using static anal-
ysis.

3.4 Metrics Model

In this section, we describe the metrics model
of stream-based computing. In this paper, met-
rics model means a formal representation used
for performance evaluation of the given com-
putation. In our model, a pipeline processing,
which repeats a cyclic procedure, is composed
of both tasks and streams. Computing cost con-
sists of processing cost depending on process-
ing time of an individual task and communica-
tion cost depending on communication delay by
tasks through streams. The cyclic period of an
allocated task is predictable if both processing
cost and communication cost are given.

In the stream-based computing model, com-
puting cost is classified into both processing
cost, depending on the execution time of a task,
and communication cost, depending on delay
through stream. Next, we describe both costs.

3.5 Measurement of Processing Cost

Here, we describe how to decide the process-
ing cost of a task. A task is an execution unit
repeating a particular procedure and consists of
one initialization part and one loop part as men-
tioned in Section 3.2. Both parts are shaded in
gray in Fig.2. The processing cost of a task
is defined as the period of an iteration. There
are two methods used to get processing cost,
one is to analyze the program code generated
by the compiler, the other is to measure pro-
cessing time by executing the generated code
directly. In the analysis based method, how-
ever, the influences of inputs/outputs synchro-
nization are ignored. Therefore, we employ the
measurement based method.

3.6 Measurement of Communication

Cost

In this section, we present the measurement
of communication cost. There is a large differ-
ence between local communication and remote
communication in the distributed system. Lo-
cal communication is often realized by means of
memory-to-memory copy. On the other hand,
remote communication is realized through a
variety of methods such as message passing,

GA-based Task Allocation by Throughput Prediction 4311

08

°
5
£

Remote ..~~~
.’*

°
>

°
n

Communication Cost {ms)
o °
s 2

o
~

. Local

°

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Data Size (Bytes)

Fig.3 Communication cost.

shared memory and so on. In this paper, we
employ message passing to realize stream com-
munication.

In general, the message is divided into fixed
size pieces called packets. The sending time T
is shown as follows:

T,=alg 146 N+T(N) (1)

where N is the data size in a message, Buf is
the size of a packet, T;(N) means a function giv-
ing transfer time and «, (3 are system dependent
constants. The first term represents packet cre-
ation time, the second term represents data
copy time to packet and the third term gives
transfer time in the network. This transfer
time is hidden in the case of asynchronous com-
munication where this can be overlapped with
other processing time. We used distributed sys-
tem Fujitsu AP3000 (UltraSparc 140 MHz x 8
nodes), as a testbed for measuring communica-
tion cost. In order to realize message passing
between tasks, we used MPI (Message Passing
Interface) libraries®. The communication cost
is shown in Fig. 3.

In this figure, X axis is data size per transfer,
Y axis is the time of a transfer where the line la-
beled “Local” shows local communication cost
and the line labeled “Remote” shows remote
communication cost.

In Fig.3, parameters in Eq.(1) are given
from the segment and slope of the graph
such as Buf = 8192, o = 014, 8 =
6.8 x 1076, Ty(N) = 0.215 in data size over
1024 (Bytes). There are influences against com-
munication cost, such as message conflicts and
system optimization. So approximate value is
used for estimating communication costs. Gen-
erally speaking, it is difficult to estimate the
data size of messages. In our model, however,
connections between tasks are statically given,

4312 Transactions of Information Processing Society of Japan

0 10 20 30
Time

Fig.4 Example of allocation and execution cycle
time of the task groups.

and communications are realized by flowing a
constant size of data periodically, so it is easy to
estimate communication cost with static anal-
ysis.

3.7 Throughput

Here, we describe the throughput which is an
important factor in the stream-based comput-
ing model. In this paper, we define the through-
put th as follows:

th=1/T (2)
where T is the execution cycle time of the com-
putation. The computation is a set of all tasks.
The allocated tasks are executed in a block re-
peatedly, and this block length is the execu-
tion cycle time. Figure 4 is an example of
task allocation and its timing chart. In this fig-
ure, the computation is represented by graph
of tasks from ‘a’ to ‘e’, where an arc is a data
stream between tasks, and PU1, PU2 are pro-
cessors. Task groups are shown by a dashed line
in Fig. 4, and tasks belonging to a group are al-
located to the same processor. The throughput
of computation is determined when a task al-
location pattern in the target system is given.
An allocation pattern is defined as the combi-
nation of tasks’ allocation to processors and the
executing order of the tasks. In this case, task
groups are already allocated to the processors
in the way mentioned in Section 4.2.1 and its
task allocation pattern al is as follows:
PU; :a,b,c
i PU,:d,e ®)

where the task groups consists of three tasks
“a,b,c” by PUj, and the other consists of “d,e”
by PUs,, and pipeline processing is composed as
a whole.

Dec. 1999

4. Task Allocation Method Using the
Knapsack Approach

Here, we propose the task allocation method
using the Knapsack approach. Our task allo-
cation algorithm consists of one analysis part
and one allocation part. The analysis part is
the investigation of system and application de-
pendencies. In the allocation part, the practical
allocation is decided by choosing from various
allocation patterns by comparing the predicted
throughput of the allocation patterns. The al-
location part is described in Section 4.2.

4.1 Amnalysis for Deciding Task Alloca-

tion

We use throughput prediction for deciding
the task allocation. We need the following data
as prerequisite parameters to the prediction:

e communication cost of each stream

e processing cost of each task

e connectivity relation among tasks and

streams

e number of processors
Since these data depend on system and appli-
cation, they are estimated at the following two
stages.

4.1.1 Preliminary Evaluation

At this stage, system dependent factors such
as processing costs of tasks and remote and:lo-
cal communication latency are measured by an
evaluation program. Then «, g in Eq.(1) are
derived using the latencies.

4.1.2 Analysis at Compilation Time

In this stage, data size per communication
and the relation among tasks are analyzed,
where the relation means the order of execu-
tion sequence among tasks. The communica-
tion cost is calculated using the parameters pro-
vided at the preliminary stage and the data size
of the stream. With these data, the prediction
of throughput for the allocation becomes possi-
ble.

4.2 Global Search Algorithm for Task

Allocation

In this section, we propose a global search
algorithm for task allocation. This method
uses allocating order lists which are lists of list-
schedulings, and search the practical allocation
among the allocation patterns generated: from
the lists. Figure 5 is an example flow of task
allocation to 2 processors, and Fig. 6 is its al-
gorithm. The flow of Fig.5 is as follows:

(1) . Represent computation as a graph of
tasks.

Vol. 40 No. 12 GA-based Task Allocation by Throughput Prediction 4313

(1)Represent computation

as a graph of tasks

¢ {2) Prepare allocaing

order lists

listl: d,c,

a,b
list2: a,b,d,c

{4)Sort by
list execution order

(3)Pick up one

(d,c,a,b)

(6)Create timing chart

(a,c,b,d) —

v, [CTq]

vo, [3] D
(5)Alocate tasks to PUs —
time

PU, PU,

Fig.5 Flow of task allocation to 2 processors.

Lists :array of allocating order lists
where Lists[i]={a;,1...ainla;; is a task
(j € 1...n, n is number of tasks)}

m :number of processors

al :allocation pattern

alpest s the best allocation pattern observed
before

th :throughput of al
thpest: throughput of alpes:

thpest=0;
for i=1 to #Lists {//#Lists is No. of Lists
al = allocate(Lists[i], m);
th = get_throughput(al);
if th > thpest { // update
thpest = th;
alpest = al;

}
Fig.6 Algorithm of Global search Knapsack.

(2) Prepare allocating order lists.
An allocating order list is a kind of list
based on the list-scheduling algorithm.
The allocating order lists in our method
are not related to the task execution or-
der, in order to create various task allo-
cation patterns from the lists. On our
global search algorithm, the allocating
order lists represent all the permutation
lists.

(3) Pick up one list (“d,c,a,b”) from an array
of allocating order lists.
A task allocation pattern is created from
the list. A task scheduling pattern con-
sists of an order of task execution, and
an allocation of tasks to processors.

(4) Sort the list by the dependency order of
tasks, then the first sorted list (“a,c,b,d”)

is used as the execution order list.
(5) Allocate tasks to processors (PUs) by
the Knapsack method described in Sec-
tion 4.2.1.
In Fig.6, function “al=allocate(list,
m)” allocates tasks to m processors in
the order of the list and register the al-
location pattern to al. An example of al
is shown in Eq. (3) in Section 3.7.
PUl: ¢, d
PU2: a, b
The detail of “allocate(list, m)” is
shown in Section 4.2.1.
(6) Create timing chart.
This chart instructs the execution se-
quence of tasks on each processor. The
allocation pattern is evaluated using
a timing chart. In Fig.6, function
“th=get_throughput (al)” returns the
throughput of the allocation pattern al
mentioned in Section 3.7.
4.2.1 Knapsack Task Allocation Algo-
rithm
Figure 7 represents a process of task alloca-
tion by our Knapsack task allocation method
which is a variant of a knapsack problem®, and
Fig. 8 is the algorithm. In Fig.7, PU—PU,,
are processors. In Knapsack method, alloca-
tion patterns are decided from the allocating
order list. An allocation pattern consists of an
allocation of tasks to processors and executing
order of tasks. There are many combinations of
these allocation patterns, but most of them are
not suitable as a solution. So, the Knapsack
method takes a greedy approach, and created
allocation patterns by the Knapsack method

4314

Computation

) Allocating order
lists

listl: a,g,f.e,b,c,d

list2: g.e,c,ab,f,d

processing cost

11— -
/commumcauon cost
), @
@@ | |
PU, PU, PU

m

Fig.7 Process of knapsack task allocation.

are restricted as follows:

Tasks communicating with larger commu-
nication latency are gathered in the same
processor to reduce communication costs.
The maximum processor load is limited to
C to avoid an imbalance of processor loads.
C is calculated as
C = e Tideal (4)

where e is the coefficient (> 1) which de-
pends on applications, and Tigea is the
ideal execution period assuming that the
computation is equally divided into proces-
sors and there are no communication de-

lays. It is calculated as
n

Tideal = Z(pz)/m
i=1
p;: processing cost of task a;
n: number of tasks
m: number of processors
With this restriction, the allocated load to
the processors gets closer to equal.

(5)

Figure 7 is an example of task allocation by

the

Knapsack method, and Fig.8 is its algo-

rithm, and the flow of the algorithm is as fol-
lows:

(1)

(2)

Repeat following steps until all the tasks
in list are allocated, where list is the al-
locating order list of tasks. In Fig.7, fol-
lowing allocating order list is used.

list1: a,g.feb,c,d

(‘a’-f’ are task names)
In Fig.7, tasks ‘a’, ‘g’, ‘f’ are already
placed and ‘e’ is in the process of being
allocated. To make the explanation sim-
pler, all the tasks’ processing costs are
assumed to be 1.
Select the processor task is allocated to.

Transactions of Information Processing Society of Japan

Dec. 1999

Function allocate(list, m)
list:a task list which represents allocating order
m :number of processors

{

}

(3)

5.

C :capacity of processor load
tsk :a task
th :throughput
Palloc: the processor id that a task is
allocated to
p 1 processor
al :allocation pattern
for i=1 to #list {//#list is No. of tasks
tsk = list[i];
// select the allocating processor paiioc
Palloc = 1;
for p= 2 to m {
if gravity(tsk,p)
> gravity(tsk, Palioc){
Palloc=p if (loadof(p) < C);

//put tsk into palioc
place(al, tsk, paiioc);

return al

Fig.8 Knapsack task allocation algorithm.

Function “gravity(tsk,p)” returns the
sum of remote communication costs be-
tween allocating task tsk and other tasks
in the processor p.

Function “load_of (p)” returns the cur-
rent load of the processor p. In Fig.7,
the sum of load in PUj is 1, and in PU,
is 2, at this time. The allocating task
‘¢’ is pulled by both ‘a’ and ‘g’, and the
gravity (communication latency) to ‘g’ is
stronger, so ‘e’ is placed into PU; which
has ‘g’. Then the sum of the load of PU;
becomes 3. If the load of PU, is over the
limit, ‘e’ is placed into PU; which has
extra space to take ‘e’.

Allocate task to the selected processor,
and change the allocation status.
Function “place(al,a,paiioc)” places a
task a into the processor paiioc, and the
current allocation status al is changed.
Tasks communicating with high commu-
nication latency are placed into the same
processor with this grouping policy.

GA-based Task Allocation Method

Task allocation problems aim to find the op-

timal allocation solution seeking the optimal
combinations of tasks. So, we used GA in order
to find global solutions efficiently.

Vol. 40 No. 12

Chroms:set of task allocating order lists
randomly generated

t :generation of GA
g€Nmag :upper limit of number of generations
Fits :set of fitness where Fits[i] is fitness

of Chromsli)
Fitpest :the best fitness (€ Fits) on
generation ¢

Chroms = generate_rand orders();

fitpest=0;

for t =1 to genmaz {
Fitpest[t]=evaluate (m, Chroms, Fits) ;
crossover(Chroms, Fits) ;
mutation(Chroms);
exit if is_converged(F'itpes:) // End

Fig.9 GA-based task allocation algorithm.

5.1 Flow of the GA-Knapsack Algo-
rithm
The GA-based task allocation algorithm in

Fig. 9 is as follows:

(1) Prepare random allocation lists.
Function “Chroms =
generate_rand_orders()” generates
lists of task allocating orders Chroms
randomly, and they are used as chromo-
somes, where a task is a locus of a chro-
mosome. The detail of the allocation pro-
cess is shown in Section 4.2.1.

(2) Repeat the following operations from 1st :

t0 genmaqrth generation.

(a) Create allocation pattern from
chromosomes, then evaluate it.

Function “Fitpes[t] =

evaluate(m, Chroms, Fits)” allocates
the tasks into m processors in the order
of each Chroms, and the corresponding
fitness is set to Fits. It is described in
Fig. 10. It is also used as an evaluation
function which returns the best fitness
(e Fits) in that generation t.

(b) Perform crossover operation.
Crossover combines the features of two
parent chromosomes to form two simi-
lar offspring by swapping corresponding
segments of the parents. In this case,
roulette strategy is used. Two-parent
chromosomes are selected with a prob-
ability equal to the probability of fitness,
and randomly select the crossover points,
then swap the segments.

The procedure

“crossover (Chroms, Fits)” generates
a set of new Chroms (allocation pat-
terns) from the existing Chroms. Fits

GA-based Task Allocation by Throughput Prediction 4315

Function evaluate(m,Chroms, Fits)

m :number of processors

Chroms :lists of task allocating order randomly
generated (=chromosomes)

Fits :set of fitness

{

list :task allocating order list (€ Chroms)
TNchrom: NUMber of chromosomes

alpest :the best allocation corresponds to thpest
thpest :throughput of alpest

thideql :ideal throughput

fitpest :the best fitness among Fits

thpest=0; //initialize thpest
for i=1 to Nchrom {
list = Chroms[i]; //allocating order
al = allocate(list, m);
th = get_throughput(al);
F’itS[’i] = th/thideal H
if thpest < th { //update
theest=th
fitpess=Fits[i]
alpest=al;

return fitpess;
}

Fig. 10 Evaluation algorithm of chromosomes.

are a set of fitness correspond to a set of
chromosomes Chrome, and new Chroms
in the next generation is crossbred ac-
cording to the ratio of the selection of
Fits in crossover procedure.

(¢) Perform mutation operation.
Mutation alters one or more genes (posi-
tions in a chromosome) of a selected chro-
mosome by a random change. It prevents
a convergence to a local solution, which
is far from the optimal one. The proce-
dure “mutation(Chroms)” breaks into
a mutation of Chroms at some probabil-
ity.

(d) Function “is_converged(Fitpest)”
judges whether the search for a solution
should stop or not, by checking the best
fitness status F'itpes: among generations
is stable or not.

In the Global search algorithm, the patterns
of allocation are extremely diverse and it is not
practical to examine all the patterns, so we em-
ploy GA®) for obtaining the practical allocation
quickly. The GA-based algorithm consists of
two stages from GAl to GA2. In GAl, ba-
sic GA operations such as crossover and muta-
tion are performed in the loop, and generation
changes according to iteration of the loop. In
GA2, the fitness of the chromosomes (=allocat-
ing order lists) in that generation are evaluated.

4316 Transactions of Information Processing Society of Japan

Table 1 The number of trials for deciding
an optimal allocation.

Global Search | GA-Knapsack
m Nirial Nirial
1 1 1
2 20! 1600
4 20! 1600

5.2 Throughput of Allocated Tasks

In the Stream-based Computing Model, the
amount of data processed in unit time is impor-
tant. So we use throughput as the evaluation
factor of the performance.

Figure 10 is the evaluation algorithm of chro-
mosomes in the GA-Knapsack method, and it
consists of 1oop (1-Nchrom) of following steps:
(1) Generates allocation pattern from the

allocating order list list. Function
“allocate(list, m)” from list, and it is
described in Section 4.2.1.

(2) Function “th=get_throughput(al)” re-
turns the throughput of the allocation
pattern al. The variable th;zeq; used in
the calculation of the fitness is the global
value and it is calculated as

th‘ideal = 1/Tz'deal (6)
where Tj4.q; is the ideal execution period
of the computation in Eq. (5).

(3) Fitness fit of the chromosome is calcu-

lated as follows:

fit = th/thigeal @]
where th is the throughput of the alloca-
tion pattern corresponds to the chromo-
some.

6. Evaluations

Here, we present the evaluation of this allo-
cation method focusing on
e the degree of efficiency of the GA-based al-
location, and
e comparison to another method (CP/MISF
method).
6.1 Evaluation about Trials of Alloca-
tions
In this section, the comparison of the aver-
age number of trials for deciding the alloca-
tion pattern between Global Search Knapsack
method and the GA-Knapsack method is dis-
cussed to get the same throughput. The com-
parison is shown in Table 1. With one trial,
corresponding to the chromosome (in allocating
order list), allocation pattern is generated using
the GA-Knapsack method, and the throughput
is evaluated. For one trial, when the number

Dec. 1999

of operational processors is only one, theoreti-
cally, the processing time in any combination is
the same, because dependency in the relation-
ship only exists. Therefore, we define speedup
rate, with this throughput as a unit, in case
the number of trial is one. The GA-Knapsack
method basically consists of the Knapsack allo-
cation, mutation and crossover. Therefore, the
amount of allocation time per one trial of the
GA-Knapsack method is larger than the Global
Search method in the amount of crossover and
mutation. However, the time of crossover and
mutation is small, so the one trial time of the
Global Search method and the GA-Knapsack
are almost the same.

In this comparison, 10 sorts of computations
composed of 20 tasks with random connections
are generated, and their average results are
shown in Table 1. Tasks’ processing cost is
given as exponential random numbers with av-
erage 100 ms, and data size of the stream is set
to 100 Bytes. On this evaluation, the number
of populations in the GA-Knapsack method was
100. In Table 1, m is the number of processors
for deciding the allocation, niyi, is the aver-
age number of trials for searching the solution.
speedup is the average speedup ratio between m
processor allocation to 1 processor allocation.
It is calculated as
throughput(m)
through ®)

ghput(1)
throughput(m): throughput of the alloca-
tion on m processors, that means m divi-
sions
throughput(1): throughput of the alloca-
tion on 1 processor
In the case, Table 1 shows the solution is given
by too few number of tries (1600 = number
of units 100 X number average generation 16).
The speedup implies, the closer the value of
speedup to m is, the higher the throughput is.

From this table, it is observed that in or-
der to get the same speedup rate of the Global
Search and the GA-Knapsack, the Global
Search Knapsack method takes 20! trials, the
GA-Knapsack takes only 1,600 trials. So the
efficiency of applying GA on task allocation is
shown. :

6.2 Evaluation about Throughput of

Computation

In this section, speedup rates are discussed
comparing our scheduling method and the
CP/MISF% method. Figures 11 and 12 show
comparisons between our proposed method and

speedup =

Vol. 40 No. 12

GA-Knapsack el

Lt

5 e
g o CPMISF

10 20 kY 40 50 60 70
the number of tasks

Fig.11 Relations between number of tasks and
speedup (number of processors = 4).

CP/MISF. Figure 11 shows the relationship
of the number of tasks and the speedup rate,
where randomly generated tasks are allocated
to four processors. Figure 12 shows the rela-
tionship of the number of processors. In Figs. 11
and 12 both, the estimated execution period
in the computation of speedup is utilized, and
the average of processing of 10 kinds is plot-
ted. In the CP/MISF case, processing cost of
the task is measured the same as our proposed
method, execution period is estimated based on
the cost, then the speedup rate is given. In our
method, the GA condition to finish the search
is as follows: The number of chromes is 500; the
GA operation is terminated by the 10th gener-
ation, when the fitness is not improved. The
average number of trials (ngpiq) is 11,400, in
case the number of tasks is 30 and the number
of streams is 45. In Fig. 11, when the number
of tasks is under 40 in case of cyclic process-
ing, our method shows the superiority of the
speedup. When the number of the tasks is just
40, the speedup rate of the CP/MISF exceeds
our GA method slightly. The reason is that
our proposed GA gets a local solution, instead
of optimal solution. As the number of tasks
increase, the difference between our proposed
GA and CP/MISF decreases. This is why each
processor load becomes balanced.

Figure 12 describes the relationship of the
number of processors and the average speedup
for 10 kinds of computations, consisting of ran-
domly generated 30 tasks. This result shows
that the proposed GA-Knapsack has 1.4 times
speedup over CP/MISF, in case the number
of processors is 8. In addition to that, in the
CP/MISF of 6 to 8 processors, the scheduling
period reaches to the length of its critical path.
Critical path gives limitations of the minimum

GA-based Task Allocation by Throughput Prediction 4317

[

”

GA-Knapsack

spsiedup

©

AKX

CPMISF

2 4 8 10 12 14

6

the number of processors

Fig.12 Relations between number of processors and
speedup (average of 10 computations).

comutation time and the appropriate number of
processors in the CP/MISF method. So no fur-
ther improvement in speedup is expected, even
if the number of processors is increased more
than 6 in Fig. 12. On the other hand, the GA-
Knapsack method shows better speedup rate,
because of more parallelism and more divisions
possible.

Time complexity for scheduling in the
CP/MISF method is O(m - n 4+ n?) where m
is the number of processors, n is the number of
tasks. In the GA-Knapsack method, the com-
plexity is O(s - n - Tipiqr), where s is number
of streams, n is number of tasks, and nq is
the number of trials). This is derived by exper-
iment, in which the complexity is proportional
to s when n and nyq are fixed, and it is also
proportional to n when s and ng.; are fixed.

7. Conclusions

In this paper, we proposed the practical task
allocation method adapting GA to choose the
suitable allocation pattern quickly from a large
number of possible choices of allocations. We
used throughput prediction as the evaluation
function of GA. In the evaluation, it is proved
that the GA-Knapsack method can reduce the
number of trials for task allocation in con-
trast to the Global Search Knapsack method.
In addition, we proved that our GA-Knapsack
method can obtain better allocation to the con-
ventional CP/MISF method.

This method features applicability to various
granularity programs. By bringing in a stream-
based computing model, factors depending on
system and application can be measured easily.
On the other hand, the stream-based comput-
ing model has a few disadvantages: for exam-
ple, stream-based computing is basically lim-

4318 Transactions of Information Processing Society of Japan

ited to pipeline processing and the program-
ming methodology of this model is different
from that of conventional procedural languages.
However, those problems can be improved by
the specific programming system supporting
this model.

References

1) Aoyagi, Y., Uehara, M. and Mori, H.: Task
Allocation Method Based on Static Eval-
uation for Heterogeneous Grained System,
Summer Workshop on Parallel Processing’97
(SWoPP’97), Vol.97, No.78, pp.7-12 (1997).

2) Aoyagi, Y., Uehara, M. and Mori, H.: A Case
Study on Predictive Method of Task Allocation
in Stream-based Computing, The 12th Interna-
tional Conference on Information Networking
(ICOIN-12), pp.316-321, IEEE Computer So-
ciety (1998).

3) MPI Primer/Developing With LAM, OhioSu-
percomputer Center, The OhioState University
(Nov. 1996).

4) Kasahara, H. and Narita, S.: An Ap-
proach to Supercomputing Using Multiproces-
sor Scheduling Algorithms, Proc. IEEE 1st Int.
Conf. on Supercomputing Systems (1985).

5) Michalewicz, Z.: Genetic Algorithms + Data
Structures = FEwvolution Progrtams, Springer-
Verlag (1994).

6) Gaughan, P.T.: Data Streaming: Very Low
Overhead Communication for Fine-grained
Multicomputing, Proc. 7th IEEE Symposium
on Parallel and Distributed Processing (1995).

7) Pospischil, G., Puschner, P., Vrchoticky, A.
and Zainlinger, R.: Developing Real-Time
Tasks with Predictable Timing, I[EEE SOFT-
WARE, pp.35-44 (Sept. 1992).

8) Sakai, S.: Scheduling and Load Balancing
in Parallel Computers, J. IPS Japan, Vol.27,
No.9, pp.1031-1038 (1986).

9) Watts, J. and Taylor, S.: A Practical Ap-
proach to Dynamic Load Balancing, IEEE
Trans. Parallel and Distributed Systems, Vol.9,
No.3, pp.235-248 (1998).

(Received January 5, 1998)
(Accepted July 1, 1999)

Dec. 1999

Yoichi Aoyagi received his
M.E. and Ph.D. degrees from
Toyo University in 1995 and
1999, respectively. He is cur-
rently working in Annex Infor-
mation, Inc. His research inter-
ests are operating systems and
programming languages. He is a member of
IEEE, IPSJ and IEICE.

Minoru Uehara received his
B.S. and M.S. degrees in electri-
cal engineering from Keio Uni-
versity, Japan, in 1987 and 1989,
and his Ph.D. degree in com-
puter science from Keio Univer-
sity in 1995. He is currently an
assistant professor of information and computer
sciences at Toyo University. His research inter-
ests include distributed system, and program-
ming language. He is a member of IEEE, ACM,
and IPSJ.

Hideki Mori received M.S.
and Ph.D. degrees all from Keio
University in 1974 and 1978, re-
spectively. He joined the faculty
at Toyo University in 1978. He
was a University Scholar of the
Department of Computer Sci-
ence of UCLA in 1984. He is a Professor of the
Department of Information and Computer Sci-
ences of Toyo University. His research interests
include parallel architecture, parallel processing
and fault tolerant computation. Most recently
his research has emphasized on distributed par-
allel processing and fault tolerance systems. He
is a member of IEEE, ACM, IPSJ and IEICE.

Akira Sato received Ph.D.
degree from Waseda University
in 1979. He joined the Research
Laboratory of JNR in 1962, then
he joined the faculty at Toyo
University in 1984. His research
interests include system simula-
tion, parallel simulation and its applications.
Most recently his research has emphasized on
road traffic simulation, fuzzy graph modeling
and its applications. He is a member of IPSJ
and SICE.

