
Vol. 41 No. 2 Transactions of Information Processing Society of Japan Feb. 2000

Regular Paper

Distributed Resource Allocation among Overlapping Groups*

Zixue Cheng,† Yutaka Wada,† Yukiko Inoue,†

Yao Xue Zhang†† and Shoichi Noguchi†

The distributed resource allocation problem is a well known fundamental problem in dis-
tributed systems. Many solutions which avoid the deadlock and starvation have been de-
veloped. With the progress of computer networks, however, distributed cooperative group
activities in a network environment have been increasing, so that several groups may compete
for some resources in the network environment and deadlock among groups and starvation
of a group may happen. Since previous allocation models are mainly for representation of
competition for resources among processes, they cannot reflect clearly the competition for re-
sources among groups of processes. Moreover, though the previous solutions to the distributed
resource allocation problem can avoid the deadlock and starvation, they cannot deal with the
deadlock among groups and starvation of a group. In this paper, we present a new model
which described explicitly the competition for resources among process groups which may
share common processes, and a definition of “Distributed Allocation of Resources to process
Group” (DARG) under the model. A solution to DARG is also proposed by extending an
acyclic graph approach to the dining philosopher problem. Our solution allocates resources to
groups of processes with deadlock among groups and starvation of a group never happening.
In addition, our algorithm guarantees that more than one group work mutual exclusively, if
a common process belongs to these groups.

1. Introduction

A well known fundamental problem in dis-
tributed systems is the resource allocation prob-
lem, which could be briefly summarized as fol-
lows.
In a distributed system, there are a set of

processes and a set of resources. Every process
requires a subset of the resources and has to
acquire all required resources for the process to
perform its task. Every resource can be allo-
cated to at most one process at a time. That
is, the processes which require a resource have
to access the resource mutual exclusively 1).
There are many variations of and extensions

to the resource allocation problem. For exam-
ple, Refs. 9) and 10) proposed the k-out of-M
model which requires arbitrary k instances from
M instances of a resource, and Refs. 5) and 9)
gave the models which consider the types of re-
sources.
When we consider the solution the resource

allocation problem, the states in which no pro-
cess can use resources and some process can
never use resources have to be avoided. The
former is called deadlock and the latter is

† Department of Computer Software, University of
Aizu

†† Department of Computer Science & Technology, Ts-
ingHua University

called starvation. Both of them are important
problems in development of distributed sys-
tems. Many distributed algorithms for avoid-
ing them have been developed. Some examples
of them are the methods which employ tech-
niques such as time stamps 6),9),10), acyclic di-
rected graph 1), and coterie 6), etc.
On the other hand, with the progress of com-

puter networks, many cooperative activities of
groups exist in a network environment. If
these groups’ activities are performed around
the same period of time, these groups may com-
pete for resources of the network. In such a
case, the deadlock among groups and/or star-
vation of a group may happen.
For example, there are 5 groups ga, gb, gc, gd,

and ge consisting of {p1, p2}, {p4, p5}, {p3, p6},
{p7, p8}, and {p7, p9}, respectively as shown in
Fig. 1. A process may be an agent, a human,
an object, or a UNIX process depending on dif-
ferent applications. The members of a group
may be resident at different sites far from each
other.
Processes in different groups may be geo-

graphically close to each other and compete for
resources. In the example, p1 and p6 compete

* This work is partially sponsored by a Research
Grant from Fukushima Prefecture, National 973
Fundamental Research Program of China, and Chi-
nese National Science Funds

474

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 475

Legends

process

Resourse

A process
requires
a resource

Communication link

p6

p1

p2

p3
p4

p5

p7

p8

r1

r2

r4

r5p9

r3

Fig. 1 An example of competition among groups.

for r1, p2 and p4 compete for r2, p3 and p5 com-
pete for r3, and p8 and p9 compete for r5.
To make the story more realistic, suppose ev-

ery group wants to hold a group meeting around
the same time, they compete for meeting rooms
equipped with high quality presentation tools
such as shared white board, screens and cam-
eras for eye contact, and so on. Since the meet-
ing rooms are limited, allocation of rooms to
groups is important. Careless allocation, such
as r1 to p1, r2 to p4, and r3 to p3, may lead
to none of ga, gb, and gc can hold its meeting,
even some process may acquire the access priv-
ilege to some room, no group meeting can be
held, since other members of the group cannot
acquire meeting rooms.
Notice there is process p7 belonging to both

groups gd and ge. However, p7 can participate
in only one group’s meeting at a time. We have
to consider such a situation, to arrange a meet-
ing time satisfying the condition, while we allo-
cate the meeting rooms to groups. Careless ar-
rangement may also lead to a deadlock among
groups. For example, if allocating r5 to p9, but
arranging p7 to attend the meeting of gd, both
the meetings cannot be held.
Previous resource allocation model and its

variations and extensions could not reflect the
relations among groups explicitly, and did not
give the definition of deadlock among groups
and starvation of a group. Moreover, previous
algorithms could only deal with the deadlock
among processes and starvation of a process,
but not deadlock among groups and starvation
of a group. Our previous works 14)∼16) did not
consider the situations where a process may be-
long to more than one group and participate in
only one group’s activity at a time. Thus the
application possibility was restricted.
In this paper, we include a situation, in which

some process may be shared by several groups,
into our model which is an abstraction of many
real applications. Figure 2 shows an exam-
ple of a game application, which is a simplified

Master

A

B

Stream A or B

Stream B

Stream A
1.5 Mbit/s

1.5 Mbit/s

1.5 Mbit/s

Fig. 2 An example of bandwidth sharing.

version of the example 17). The master deliv-
ers information related to the game contents
to player A and B. Each player of A and B
in turn sends update information to the mas-
ter alternately, when taking an action. For
sending update information from the player A
(or player B) back to the master, both the
player A and the master (or the player B and
the master) have to reserve enough bandwidth,
say 1.5Mbits/s in the example. That means a
group, consisting of the player A and the master
(or the player B and the master), has to acquire
all required resources which may be competed
for with other applications.
The two groups has a common member, i.e.,

the master. To save the network resources,
bandwidth sharing technique is employed 17).
Two streams from the player A to the mas-
ter and from the player B to the master share
bandwidth. Support the bandwidth assigned to
(reserved by) the master, player A, and player
B is 1.5Mbits/s, respectively. The master par-
ticipate in the two groups alternately, i.e., it
receives information from A and B alternately.
It cannot receive the information from the two
players at the same time, since that will require
2×1.5Mbits/s by the master. In most of cases,
A and B will play the game in turn, and reserv-
ing 2× 1.5Mbits/s for the master is a waste of
resource.

Figure 3 illustrates another example regard-
ing cooperative development of software sys-
tems, where four project teams Ta, Tb, Tc, and
Td exist.
Each team consists of some members. In a

team, every member basically works individu-
ally, e.g., coding a part of a program. Mem-
bers in the team work cooperatively in an asyn-
chronous way. In other words, everyone may
work on his/her own part in a different time.
However, besides individual works, the mem-
bers of a team have to discuss simultaneously

476 Transactions of Information Processing Society of Japan Feb. 2000

T

T

: Router

:Memory

:Disk

:Gateway

: A process initiated
 by a person of a team

: Team TT

Pj

P

8

P
1

P
2

P
4

P
5

i

b

a

P
3

T
c

Td

P

6

P
7

i

... ...

: A process of
some application

Fig. 3 An example of cooperative software development.

with one another by using a shared working
space, once (or several times) a day. In order for
a team to construct the shared working space,
every member of the team has to acquire a cer-
tain amount of memory and network resource
which may be competed for by other processes
of other applications.
Because p2 belonging to Tb is resident in a lo-

cation close to p1 of Ta, they may compete for
network resource for sending out their data to
other members of their teams, if the network re-
source is being used by many other applications
and the network traffic load around the location
is very high, it is possible that the two streams
cannot send their data at the same time. Sim-
ilarly p4 and p5 may compete for network re-
sources.
Suppose a skillful person p3 belongs to teams

Tb and Tc, since p3’s specialty is needed by both
teams. p3 cannot attend the discussion of both
teams at the same time, since p3 wants to con-
centrate on one work at a time. The certain
amount of memory assigned to p3 is used for
team Tb or Tc at a time. When p3 finishes (sus-
pends) the discussion with a team, the content
of the memory will be written on a disk, so
that the memory can be used for another team.
Similar thing is true for another person p7, who
belongs to teams Ta and Td.
Suppose the four groups have to discuss once

(or several times) a day. There is a high possi-
bility that those groups arrange the discussions
around the same time. When we consider to

allocate network resources to p1, p2, p4 and p5,
we also have to take p3 and p7 into account,
otherwise deadlock among groups may happen.
For example, if we let p2 use the network re-
source after p1 finishes using, and p5 use the
network resource after p4 finishes using, and we
further assume that p3 is arranged to attend
the discussion of Tb first and p7 is arranged to
attend the discussion of Td first, no group can
have their discussion, since every group is lack
of a member to participate or network resources
for sending out data.
In order to solve the new problem, we firstly

represent clearly the relation among groups of
processes, and then define the deadlock among
groups and starvation of a group explicitly. In
addition, we propose a solution which guaran-
tees that deadlock among groups and starva-
tion of a group never happen, based on an ex-
tension of acyclic graph approach. Finally, the
message complexity of the proposed algorithm
is analyzed. For a group to acquire all required
resources, O(m + n2) messages are necessary,
where m is the number of processes which may
compete for some resources with any process of
the group, and n is the number of processes of
the group.
Recently, mutual exclusion method consider-

ing the relations of inter-groups and intra-group
attracts some researchers’ attention, and an al-
gorithm for resolving the resource competition
by using K logical ring was proposed 11). How-
ever, in the model, for every group, a resource

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 477

is competed for by all processes in the group,
which cannot be applied to the situation where
every process in a group has to be ensured to
acquire its required resources at the same time,
and do their cooperative group work together.
So far, there is no such model as ours, which
deals with that a set of processes in a group
compete for resources with other groups, and
acquire all required resources for them to do
their cooperative group work.
The rest of the paper is organized as follows.

In Section 2, our resource allocation model and
the definition of DARG are given. In Section 3,
we propose our new solution to DARG. Section
4 discusses the message complexity of the algo-
rithm. A variation of the algorithm is presented
in Section 5. Section 6 concludes the paper.

2. Model and Problem

Definition 1 (Resource Allocation Model)
The resource allocation model is represented
by a tuple (B,F). B = (V,E) is a bipartite
graph, where V = P ∪ R is a set of nodes con-
sisting of a set of processes denoted with P =
{p1, p2, · · · , pi, · · · pn} and a set of resources de-
noted with R = {r1, r2, · · · , rj , · · · , rm}. E is
a set of edges e = (pi, rj) between pi and rj .
F is a family of subsets of processes which be-
long to P. That is F = {g1, g2, · · · , gk, · · · , gh},
where gk ⊆ P. gk is called “process group” or
“group”.
If a process may require a resource, there is

an edge between them in B. We also say the
process is adjacent to the resource. Each pro-
cess is adjacent to one or more resources. The
set of resources, to which a process pi is adja-
cent, is denoted with Ri ⊆ R. The set of pro-
cesses, which requires a resource rj , is denoted
with Pj ⊆ P. If Ri1 ∩ Ri2 �= {}, two processes
pi1 and pi2 are said to be in competition. In
other words, there is a resource rj , such that
pi1 ∈ Pj and pi2 ∈ Pj . The set of processes, the
set of resources, the adjacent relation between
processes and resources, and the set of groups
don’t change dynamically during an execution
of our algorithm.
The following properties have to be guaran-

teed when allocating resources to processes of
groups.
(1) Each process has to acquire all resources

adjacent to it.
(2) A resource can be allocated to only one

process at a time.
(3) In order for a group to perform their

group cooperative work, the group has to ac-
quire all resources adjacent to the group (all
resources adjacent to any process in the group).
(4) Two or more groups cannot work at the

same time, if they share any common process
(i.e., the process belongs to these groups).
Remark 1 The conditions (1) and (3) could
be relaxed to a more general model, since in
some applications, that a part of processes ac-
quire a part of required resources is enough for
a group to perform its group work.

Definition 2 (Deadlock, Starvation, Group
Deadlock, and Group Starvation)
Deadlock means that no process can acquire all
resources adjacent to it.
Group Deadlock (deadlock among groups)
means that there is no group such that every
process of the group can acquire all resources
adjacent to it.
Starvation means that there is some process
that never acquire all resources adjacent to it
at the same time.
Group Starvation (starvation of a group) means
that there is some group such that some process
of the group never acquire all resources adjacent
to it at the same time.
Assumption 1 We assume that processes be-
longing to the same group do not compete for
any resource. That is because if they compete
for a resource, not all processes in the group
can acquire their required resources at the same
time. That means it is impossible to solve the
problem with group starvation free.
However, the assumption could be removed

under the relaxed condition mentioned in re-
mark 1.
Definition 3 (Distributed Problem DARG)
The problem DARG (Distributed Allocation of
Resources to process Groups) is how to devise
an algorithm which allocates the resources to
the processes in the above model without group
deadlock, group starvation, deadlock, and star-
vation under the above assumption.
Initially, each process knows its own identi-

fier, the identifiers of groups to which the pro-
cess belongs, identifiers of all processes in these
groups, identifiers of the processes which com-
pete for some resource(s) with it. We assume
that a total order among group identifiers de-
noted with integers is predefined. Similarly, an-
other total order among process identifiers is
predefined also.
As output, each process in a group acquires

478 Transactions of Information Processing Society of Japan Feb. 2000

all required resources and begins to work by us-
ing these resources, with Deadlock, Starvation,
Group Deadlock, and Group Starvation never
happening.
Assumption 2 (Underlying Network)
In this paper, we consider that the resource al-
location model will be implemented in a net-
work environment. A process is mapped to a
site of the network. Each pair of processes in
the same group are connected with a communi-
cation channel. In addition to these channels,
there is a communication channel between each
pair of processes which are in competition.
Each process executes the same algorithm,

which consists of sending massages on incident
edges, waiting for incoming messages, and pro-
cessing them. Messages are transmitted inde-
pendently in both directions in a communica-
tion channel, and arrive after a finite but un-
predictable delay, without errors and in FIFO
order.
Each process has 3 states: thinking, hungry,

and acquired similar to the 3 states of a
philosopher in dining philosophers problem. In
thinking state, the process does not require any
resource. A process spontaneously makes tran-
sition from thinking to hungry state in finite
time. “Spontaneously” means that the transi-
tion is not dependent on other processes, but
the process itself. Generally, some input from
a user or an application of the process initiates
the transition. In hungry state, the process
requires all resources adjacent to it. When all
resources required by a process are acquired, its
state is changed to acquired. Though a process
in acquired state can access the resources, in
order to use these resources for group work, the
process may have to wait for other processes in
the group, due to the properties (3) and (4) in
Definition 1.

3. The Distributed Algorithm

3.1 Review of the Techniques of Pre-
vious Works

The traditional distributed resource alloca-
tion without considering competition among
groups can be described as the distributed din-
ing philosophers problem, illustrated by a con-
nected undirected graph, in which a vertex (a
process) represents a philosopher, and an edge
represents a fork between the pair of processes
that compete for a set of resources.
A famous solution for distributed dining

philosophers problem is based on an acyclic

p1

p2 p3

(a)

p1

p2 p3

(b)

p1

p2 p3

(c)

Fig. 4 An example of competition among three
processes.

directed graph technique 1),2). The technique
points of the approach are summarized below.
We assume that readers are familiar with the
traditional dining philosopher problem. We use
the terms such, thinking, hungry, eating, fork,
etc. as in the problem without explanation.
(1) An arc (pi, pj) oriented away from pi to

pj means that pj has the privilege to use the
fork competed by the two processes.
(2) Initially, the direction of every arc is ar-

ranged such that the directed graph formed by
the arcs are acyclic, so that there is at least a
sink vertex (philosopher), which holds all privi-
leges of forks incident to it and is able to acquire
all required forks in order to eat.
(3) After eating, the philosopher reverses all

incident arcs simultaneously. So that the di-
rected graph is still acyclic and some other ver-
tex becomes sink.
For example, 3 processes compete for 3 forks

as shown in Fig. 4 (a). Initially, p1 is a sink,
and eventually can acquire all required forks
and use them. Then it reverses the arcs, see
Fig. 4 (b), so that p2 can acquire all required
forks. The same will happen to p3.

3.2 Some Technique Points of our Pre-
vious Solution

We extended the traditional resource alloca-
tion problem to the distributed resource alloca-
tion problem among process groups, where all
processes of a group have to acquire all required
resources in order to perform their cooperative
works by using the resources, assuming there
is no more than one group shares a common
process 14),15).
A solution for the extended problem was also

based on the acyclic graph approach. However,
the above technique points are not enough to
solve the extended problem. For example, in
Fig. 5 (a), the graph is acyclic, but still a dead-
lock among groups happens, since there is no
such a group that all processes in the group
can acquire all required resources.
One reason of the group deadlock is because

the arcs between ga and gb are inconsistent.

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 479

p1 p2 p5

(a)

p3 p4
p6

p1 p2 p5

(b)

p3 p4
p6

p1 p2 p5

(c)

p3 p4
p6

p1 p2 p5

(d)

p3 p4
p6

g
a

g b

g
c

g
a

g b

g
c

g
a

g b

g
c

g
a

g b

g
c

Fig. 5 Competition among three groups.

Namely, arc from p3 to p1 is oriented away from
gb to ga, but arc from p2 to p4 is in the oppo-
site direction. Therefore, ga and gb may never
acquire all resources required. Even though the
direction of the arc from p3 to p1 is reversed to
remove the inconsistency, as shown in Fig. 5 (b),
still group deadlock exists, since no group of
ga, gb, and gc can acquire all resources adja-
cent to the group. This is because for every
group, some arc of a process belonging to the
group is directed to a process of another group,
which means the group doesn’t hold all priv-
ileges. If reversing the arc from p2 to p4 in
Fig. 5 (a), the deadlock is avoided, because all
processes p1 and p2 can acquired all required
resources (see Fig. 5 (c)).
Therefore in additional to above technique

points, the following are required.
(4) All arcs between a pair of groups have

to be oriented away from a group to another
group.
(5) If all arcs between a pair of groups are

considered as an meta-arc and a group as
a meta-vertex, we obtain a meta-graph (see
Fig. 5 (d)).
The meta-graph should be kept to be acyclic

to guarantee group deadlock and group starva-
tion.

3.3 Basic Ideas of the Solution in this
Paper

In this paper, we consider DARG under a
more general model, in which a process may be-
long to more than one group, compared to the
model in Refs. 14) and 15). The above tech-
niques (4) and (5) don’t work in the general-
ized model. For example, in Fig. 6, if all arcs
are oriented away from group gc to ga, it is not
true for gb and gd. It is impossible for every pair
of the groups to satisfy (4), whatever the initial
directions of the arcs are set. The example tells
us that we need more tricky and elegant control

1 2

4 3

g a

g
bg d

g c

Fig. 6 An example of competition among
overlapping groups.

method for the generalized problem.
In order to solve the problem, in the rest part

of this subsection, we first introduce some new
variables used by a process which belongs to
more than one group. The values of these vari-
ables reflect which group has privilege to use the
process and resource adjacent to the process.
Based on the variables, we present 3 conditions
which should be set initially and maintained
during the execution of the algorithm, to guar-
antee group deadlock-free and group starvation-
free. Also we outline how to maintain the con-
ditions.

3.3.1 Variables
(1) Let Gi ⊆ F be a set of groups, to each of

which pi belongs, and |Gi| = q. Every process
pi belonging to q > 1 groups holds a q×q array
Aq. An element xigl

igk
(gk �= gl) ofAq is a boolean

variable, where gk, gl,∈ Gi. x
igl

igk
= 1 (hereafter

we use 1 and 0 to represent the boolean val-
ues true and false) means that pi would like
to participate in the group work of gk but not
gl. In other words, gk holds the privilege to use
pi. x

igk

igl
= ¬xigl

igk
holds always. For the case of

gk = gl, x
igl

igk
= null.

In order for pi to participate in activity of
group gk, ∀gl ∈ Gi, x

igl

igk
must be equal to 1.

After pi finishes gk’s activity, xigl

igk
is set to 0

and xigk

igl
is set to 1.

Intuitively, a process belonging to q > 1
groups could be represented with q copies, each
of which belongs to a different group, and there
is an arc between every pair of the copies,
as shown in Fig. 7. The variables described
above could be considered as an implementa-
tion method of the arcs.
Remark 2 It seems to be redundant that i
is used in both the subscript and superscript
of xigk

igl
. However, it is for specifying variables

in an uniform manner, which is convenient to
specify the conditions of the algorithm. (See
the latter part of the section.)
(2) In the solution for the dining philosophers

problem 1),2), an arc between a pair of pro-

480 Transactions of Information Processing Society of Japan Feb. 2000

(a)
(b)

p p p

p

g g g g

g
g

a b

c

a b

c

Fig. 7 Copies of a process shared by groups.

(a) (b)

p p p
g g g g
a b a

b

p
g g
c d

i

j

p p
g g
c

d

i i

j j

Fig. 8 Relations between copies of processes.

cesses (pi, pj) could be implemented by a pair
of boolean variables xj

i and xi
j held by pi and

pj , respectively, under the condition xj
i = ¬xi

j .
In this paper, if pi and pj belongs to q and r

groups respectively, pi holds a q × r array Aqr

and pj holds a r × q array Arq of variables, for
the edge (fork) between pi and pj . Element xjgl

igk

in Aqr is equal to ¬xigk

jgl
in Arq.

Intuitively, pi and pj are split into q and r
copies, respectively. These copies are connected
by a directed complete bipartite graph. These
variables are an implementation method of the
directed arcs as shown in Fig. 8.

3.3.2 Conditions
In order to guarantee mutual exclusion, group

deadlock and starvation freedom, the following
three conditions have to be satisfied.

∀i, j ∈ P, gk, gl ∈ F s. t. gk �= gl,(
xjgl

igk
∧ ¬xigk

jgl

)
∨

(
¬xjgl

igk
∧ xigk

jgl

)
= 1 (1)

The condition is for the mutual exclusion
property. That means, when i �= j, no two
processes use the same fork at the same time,
and when i = j, no two groups sharing a com-
mon process perform their group tasks at the
same time. Intuitively, the arc between two
processes pi and pj is directed from pi to pj

or vice versa. Also, the arc between two copies
pi(gk) and pi(gl) of process pi = pj is directed
from pi(gk) to pi(gl) or vice versa.

∃gk, gl ∈ F, s.t. gk �= gl,

∧

∀i∈gk, j∈gl, s.t. x
jgl
igk

exists

xjgl

igk

∨

∧

∀i∈gk, j∈gl, s.t. x
jgl
igk

exists

¬xjgl

igk

=1 (2)

The condition is for the mutual exclusion be-
tween two groups. All privileges should be held
by one group to guarantee group starvation-
freedom. Intuitively, all arcs between gk and gl

should be directed from gk to gl or vice versa.
If processes pi ∈ gk and pj ∈ gl compete for

a resource or gk and gl share a common pro-
cess, we say group gk and gl are adjacent. A
path among groups is defined as a sequence of
distinct groups g1, g2, · · · , gs, such that gh+1 is
adjacent to gh, where 1 ≤ h < s. A circuit of
groups is defined as a closed path such that all
groups are distinct except g1 = gs.
For any circuit of groups, g1, g2, · · · , gs,

 ∧
∀i1,j1,l1=g2 or gs−1

xj1l1
i1g1

 ∨

 ∧

∀i2,j2,l2=g3 or g1

xj2l2
i2g2

 ∨

· · ·
∨

 ∧

∀is−1,js−1,ls−1=gs or gs−2

x
js−1ls−1
is−1gs−1

 = 1

(3)

The condition is for group deadlock-free.
That means, for any circuit of groups at least
there exists one group, whose variables related
with the groups of the circuit are equal to 1.
Intuitively, taking group as a node, the graph
formed by the groups are acyclic. Thus there
must be at least a group g′k which is a sink in
the graph, such that all its variables xjgl

ig′
k
= 1.

3.3.3 Outline of the Methods for
Maintaining the Conditions

Assuming that every group has a unique
identifier represented by an integer, a simple
method could be used to set the initial values
of the variables such that all the above three
conditions are satisfied.
For the pair of variables xigl

igk
and xigk

igl
, held

by process pi, pi sets x
igl

igk
= 1 and xigk

igl
= 0, if

id(gk) < id(gl), where id(gk) and id(gl) denote
the identifiers of gk and gl, respectively.
For the pair of variables xjgl

igk
and xigk

jgl
held by

different processes pi and pj belonging to differ-
ent groups, pi and pj send their group identifiers
to each other, and then the one holds smaller

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 481

group identifier sets its corresponding variables
to 1, another one sets its corresponding vari-
ables to 0.
The above three conditions are maintained

during an execution of the algorithm (see the al-
gorithm for detail). The basic points are as fol-
lows. After a group gk such that all its variables
xjgl

igk
are equal to 1 uses its resources, the privi-

leges of using the resources should be transfered
to adjacent groups. In other words, xjgl

igk
should

be set to 0, and xigk

jgl
should be set to 1. Here

gk �= gl, i may (or may not) be equal to j. If
i = j, xjgl

igk
and xigk

jgl
are held by the same pro-

cess pi. Thus they can be set by pi. If i �= j,
xjgl

igk
and xigk

jgl
are held by pi and pj respectively.

Variable xjgl

igk
is set to 0 by pi, and a turn(gk)

message is sent to pj ∈ gl by pi. On receiving
the message, pj sets its variable xigk

jgl
= 1. Dur-

ing the transmission of the message, variables
xjgl

igk
and xigk

jgl
may be both equal to 0, but they

will never be 1 at the same time, which guaran-
tees the mutual exclusive access to resources.
After group gk finishes using the resources,

though it transfers the privileges to adjacent
groups, it does not release the resources at once.
It will release them only on request of other
processes as in the solution for the distributed
dining philosophers problem 2). If other adja-
cent groups don’t require the resources, i.e., the
processes of these groups are in thinking state,
the former group may use again the resources
if it makes transition from thinking to hungry
again.
To represent which one of pi and pj compet-

ing for a resource (fork) holds the fork, a vari-
able yj

i is employed. The fork competed for by
pi and pj can be initially held by any one of pi

and pj . We use a variable yj
i = 1 to represent

pi holds the fork. Obviously, yi
j = ¬yj

i .
A group of processes will use the resources,

only when all xjgl

igk
= 1 and all its processes

acquire all their required resources. To check
if the condition is satisfied, communication
among processes in the group is needed. In-
form messages are employed for the purpose.

3.4 An Example
We show how our algorithm works for an

example where 4 processes belonging to 4
groups compete for two resources as shown in
Fig. 9 (a).
We assume that the order on group identifiers

is defined as id(ga) < id(gb) < id(gc) < id(gd).
For simplicity, we use a, b, c, and d to represent

1

g a

g
b

g d

g c

2

2

3

3

4

4

1

1 2

4 3

g a

g
bg d

g c

(a) (b)

Fig. 9 An example of the algorithm.

Table 1 Initial values of the variables.

p1 p2

ga gd ga gb

x3b
1a = 1 x1a

1d = 0 x2b
2a = 1 x2a

2b = 0
x3c
1a = 1 x3b

1d = 0 x4c
2a = 1 x4c

2b = 1
x1d
1a = 1 x3c

1d = 0 x4d
2a = 1 x4d

2b = 1
p3 p4

gb gc gc gd

x1a
3b = 0 x1a

3c = 0 x2a
4c = 0 x2a

4d = 0
x3c
3b = 1 x3b

3c = 0 x2b
4c = 0 x2b

4d = 0
x1d
3b = 1 x1d

3c = 1 x4d
4c = 1 x4c

4d = 0

the identifiers of groups.
Every process holds variables xjgl

igk
as shown

in Table 1, where the identifiers of processes
i, j ∈ {1, 2, 3, 4} and the identifiers of groups
gk, gl ∈ {a, b, c, d}. These variables are initiated
to 1 or 0, with the method mentioned in Sec-
tion 3.1. The initial state could be represented
by a directed graph shown in Fig.9 (b).
Whatever the value yj

i is, i.e., whichever pro-
cess of pi and pj holds the fork, since all vari-
ables of p1 and p2 in group ga are equal to 1,
i.e. x1d

1a = 1, x2b
2a = 1, x3b

1a = 1, x3c
1a = 1, x4c

2a = 1,
and x4d

2a = 1, p1 and p2 will not send forks on re-
ceiving request messages, until they acquire all
required resources, and finish performing their
group work using the resources. In other words,
p1 and p2 will eventually acquire all required re-
sources, send an inform message to each other,
and access the resources. After that, p1 and p2

set xigl

ia = 0, xjgl

ia = 0, and xia
igl

= 1. Also, p1

and p2 send a turn(a) message to p3 and p4,
respectively.
The variables xia

jgl
will be set to 1 by p3 and

p4, on receiving turn(a). See Table 2 for the
change of the values of the variables.
From Table 2, all variables of p2 and p3 in

group gb are equal to 1. Therefore, p2 and p3

will eventually acquire all required resources,
send an inform message to each other, and ac-
cess the resources. After that, p2 and p3 set
xigl

ib = 0, xjgl

ib = 0, and xib
igl

= 1. Also, p2 and

482 Transactions of Information Processing Society of Japan Feb. 2000

Table 2 Values of the variables after ga is executed.

p1 p2

ga gd ga gb

x3b
1a = 0 x1a

1d = 1 x2b
2a = 0 x2a

2b = 1
x3c
1a = 0 x3b

1d = 0 x4c
2a = 0 x4c

2b = 1
x1d
1a = 0 x3c

1d = 0 x4d
2a = 0 x4d

2b = 1
p3 p4

gb gc gc gd

x1a
3b = 1 x1a

3c = 1 x2a
4c = 1 x2a

4d = 1
x3c
3b = 1 x3b

3c = 0 x2b
4c = 0 x2b

4d = 0
x1d
3b = 1 x1d

3c = 1 x4d
4c = 1 x4c

4d = 0

Table 3 Values of the variables after gb is executed.

p1 p2

ga gd ga gb

x3b
1a = 1 x1a

1d = 1 x2b
2a = 1 x2a

2b = 0
x3c
1a = 0 x3b

1d = 1 x4c
2a = 0 x4c

2b = 0
x1d
1a = 0 x3c

1d = 0 x4d
2a = 0 x4d

2b = 0
p3 p4

gb gc gc gd

x1a
3b = 0 x1a

3c = 1 x2a
4c = 1 x2a

4d = 1
x3c
3b = 0 x3b

3c = 1 x2b
4c = 1 x2b

4d = 1
x1d
3b = 0 x1d

3c = 1 x4d
4c = 1 x4c

4d = 0

Table 4 Values of the variables after gc is executed.

p1 p2

ga gd ga gb

x3b
1a = 1 x1a

1d = 1 x2b
2a = 1 x2a

2b = 0
x3c
1a = 1 x3b

1d = 1 x4c
2a = 1 x4c

2b = 1
x1d
1a = 0 x3c

1d = 1 x4d
2a = 0 x4d

2b = 0
p3 p4

gb gc gc gd

x1a
3b = 0 x1a

3c = 0 x2a
4c = 0 x2a

4d = 1
x3c
3b = 1 x3b

3c = 0 x2b
4c = 0 x2b

4d = 1
x1d
3b = 0 x1d

3c = 0 x4d
4c = 0 x4c

4d = 1

Table 5 Values of the variables after gd is executed.

p1 p2

ga gd ga gb

x3b
1a = 1 x1a

1d = 0 x2b
2a = 1 x2a

2b = 0
x3c
1a = 1 x3b

1d = 0 x4c
2a = 1 x4c

2b = 1
x1d
1a = 1 x3c

1d = 0 x4d
2a = 1 x4d

2b = 1
p3 p4

gb gc gc gd

x1a
3b = 0 x1a

3c = 0 x2a
4c = 0 x2a

4d = 0
x3c
3b = 1 x3b

3c = 0 x2b
4c = 0 x2b

4d = 0
x1d
3b = 1 x1d

3c = 1 x4d
4c = 1 x4c

4d = 0

p3 send a turn(b) message to p4 and p1, respec-
tively.
The further change of values of variable in

each process during the execution is shown in
Tables 3, 4, and 5. Readers can trace in the
same way as described above.
Notice the Table 5 is same as the Table 1,

which means the state of the system returns to
the initial one. So the above execution steps
will be repeated.

4. Correctness and Complexity of the
Algorithm

4.1 Correctness
Theorem 1 Mutual exclusive access to every
resource is preserved.

Proof. When a resource is competed for
by a pair of processes pi and pj , a pair of vari-
ables yj

i and yi
j are used by pi and pj respec-

tively. Initially, only one of the two variables is
set to true. Another is set to false. The pro-
cess with its variable being false cannot access
the resource. Without loss of generality, let’s
assume yj

i = true and yi
j= false . Then, pj

with its variable being false cannot access the
resource and will send a request message to pi.
On receiving the request message, pi will set y

j
i

to false and send a fork message to pj immedi-
ately, or postpone the setting and sending fork
until it finishes using the resource. After receiv-
ing the fork message, pj sets yi

j to true. Before
receiving the fork message, both of the variables
may be false. But both variables never become
true at the same time. Therefore, mutual ex-
clusive access to the resource is preserved, since
a process can access the resource, only when its
variable becomes true. ✷

Lemma 1 Condition (3) in Section 3.3.2 is
preserved by the algorithm.

Proof. A unique group identifier is as-
signed to every group, and a total order is de-
fined over the identifiers of all groups. The vari-
ables xjgl

igk
and xigk

jgl
are initialized according to

the identifiers, such that the group with smaller
identifier holds the privilege. Therefore, for ev-
ery circuit, Condition (3) is satisfied. Conse-
quently, there is at least a group gk′ such that
all variables xjgl

igk′ are equal to 1. The one with
the smallest group identifier of all groups is such
a group.
In addition, when gk′ finishes its task and

variables xjgl

igk′ and variables xigk′
jgl

are changed
to 0 and to 1 respectively, Condition (3) are still
preserved. This can be shown by the following
case analysis.
(1) If in a circuit of groups g1, g2,· · ·, gk′ ,

· · ·, gk, · · ·, gs−1, gs(= g1), there is another gk

besides gk′ , such that
 ∧

∀ik,jk,lk=gk+1 or gk−1

xjklk
ikgk

 = 1,

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 483

Condition (3) still holds, even all xjgl

igk′ are set
to 0.
(2) Suppose that in a circuit of groups

g1, g2, · · · , gk′ , · · · , gs−1, gs(= g1) there is only
a group gk′ such that all variables of gk′ are
equal to 1, then variables x

jgk′
igk′+1

= 0 and

x
jgk′
igk′−1

= 0. However, at least for one group
of gk′+1 and gk′−1 adjacent to gk′ , variables
x

jgk′+2
igk′+1

or x
jgk′−2
igk′−1

should be 1, otherwise, there
will be another gk as in Case (1) since the cir-
cuit is acyclic originally. When variables xjgl

igk′

are changed to 0, variables xjgk′
igk′+1

and x
jgk′
igk′−1

will be changed to 1. Thus,
 ∧

∀ik,jk,lk=gk′ or gk′+2

xjklk
ikgk′+1

 = 1 or

 ∧

∀ik,jk,lk=gk′ or gk′−2

xjklk
ikgk′−1

 = 1.

That means Condition (3) is preserved. ✷

Lemma 2 A group gk such that all variables
xjgl

igk
= 1 will eventually execute its task.

Proof. In the case i = j, xjgl

igk
= 1 means

process pi will participate in gk rather than gl.
In the case i �= j, xjgl

igk
= 1 means process pi

holds the privilege to use the resource competed
for by pi and pj .
If pi is hungry and has held the resource,

i.e., yj
i = 1, it will not release the resource,

until it finishes using the resource, even on re-
ceiving a request from pj , since the condition
“not hungryi or not ∃gk ∈ Gi, ∀gl ∈ Gj , s.t.∧
xjgl

igk
” is not satisfied, i.e., hungryi = 1 and

∃gk ∈ Gi, ∀gl ∈ Gj , s.t.
∧
xjgl

igk
= 1 (see the part

of algorithm for receipt of request messages).
If pj holds the resource, i.e., yi

j = 1, on re-
ceiving a request message from pi, pj will re-
sponse the request and send fork immediately,
since the condition “not ∃gl ∈ Gj , ∀gk ∈ Gi,
s.t.

∧
xigk

jgl
” of the algorithm for pj is satisfied.

Therefore, gk will acquire all required re-
sources and executed its task. ✷

Theorem 2 Group deadlock never happen.
Proof. By Lemma 1, during an execution

of the algorithm, there is always at least a group
gk such that all its variables xjgl

igk
are equal to

1. By Lemma 2, such a group will eventually
execute its task. Therefore, the group deadlock
never happen. ✷

Notation 1 (Depth of a Group)
We call a group sink group if values of all its
variables are equal to 1 . The depth of a sink
group is defined as 0. Due to Condition (3),
for every group, say g1, there is a finite length
directed path g1, g2, · · · , gk · · · , gs from g1 to a
sink group gs, such that xjgk+1

igk
= 0 (1 ≤ k ≤

s−1). The length of the longest path of a group
(out of all paths from the group) is called the
depth of the group. ✷

Lemma 3 If xjgl

igk
= 0, the depth of gk is

greater than that of gl.
Proof. Suppose the longest path of

gl is gl, gl+1, · · · , gk · · · , gs from gl to a sink
group gs and the depth of group gl is dl.
Because of xjgl

igk
= 0, there is a path

gk, gl, gl+1, · · · , gk · · · , gs from gk to gs and the
length of the path is dl + 1. So the depth of gk

is not less than dl +1, due to the the definition
of depth of a group. ✷

Theorem 3 Group starvation will never hap-
pen.

Proof. From the definition of depth of a
group and Lemma 2, a group whose depth is
0 will eventually acquire all required resources
and execute its task.
In the following, we show inductively that the

depth of every group will eventually becomes 0.
(1) The depth of a group gk, whose current

depth is 1, will eventually change to 0.
Variables xjgl

igk
of gk, whose current depth is

1, is equal to 0, only if the depth of gl is 0.
Otherwise, xjgl′

igk
= 1.

Since group gl whose current depth is 0 will
eventually acquire all resources, execute its
task, and send a turn message to gk, variables
xjgl

igk
will eventually be set to 1, i.e., all gk’s vari-

ables becomes 1. That means the depth of gk

becomes 0.
(2) Suppose the depth of group, whose cur-

rent depth is less than k, will eventually become
0, we show the depth of a group whose current
depth is k will eventually become 0.
Variables xjgl

igk
of a group gk, whose current

depth of is k, is equal to 0, only if the depth of
gl is less than k. Otherwise, xjgl′

igk
= 1, (where

the depth of gl′ is not less than k).
By the assumption of the induction, every

group gl whose current depth is less than k
will eventually acquire all resources, execute its
task, variables xjgl

igk
will eventually be set to 1,

i.e., all gk’s variables becomes 1. That means

484 Transactions of Information Processing Society of Japan Feb. 2000

the depth of gk becomes 0. ✷

4.2 Message Complexity
To compute the complexity of the algorithm,

we denote the number of processes which may
compete for a resource with pi by ρi.

ρi =

∣∣∣∣∣∣
⋃

rj∈Ri

Pj

∣∣∣∣∣∣
− 1 = |Neigi|

Namely, ρi is the number of processes which are
adjacent to any of resources required by pi.
Let n = |gk|, and m be the number of pro-

cesses which may compete for any resource with
any process in group gk. That is,

m =
∑

pi∈gk

ρi.

The maximum number of messages (the worst
case complexity) which are needed in our algo-
rithm for a group gk to work once is computed
below.
For a group gk to work once, a request mes-

sage is sent by every pi ∈ gk to every pj ∈ Neigi

which may compete for some resources with pi,
a fork message is sent back by pj ∈ Neigi to
pi ∈ gk, an inform message is sent by every
pi ∈ gk to every ph ∈ gk except pi itself, and a
turn message is sent by every pi ∈ gk to every
pj ∈ Neigi.
Thus, the total messages is:∑

pi∈gk
ρi +

∑
pi∈gk

ρi +
∑

pi∈gk
(n− 1)+∑

pi∈gk
ρi = 3m + n(n − 1).

The message complexity is O(m+ n2).

5. A Variation

In the algorithm presented in Section 3, we
assume that processes become hungry, inde-
pendently. That is, a process is independent
of other processes to change its state from
thinking to hungry. However, in some appli-
cations, a group of processes become hungry
in the same time, in order to carry a group
work. Therefore, it is necessary to deal with
the situation of group hungry. For example,
let’s suppose that group ga and gc are planing
to have a group meeting, but neither gb nor gd

do, in Fig. 6. Though all processes of p1, p2, p3,
and p4 become hungry and acquire all required
resources, gb and gd should not work, because
they are not hungry as a group.
A variation of algorithm is given below to deal

with such kind of applications. In addition to
the variable hungryi, for every gk ∈ Gi, pi holds

a variable hungryk
i which will be set to true

by the application program or the user of pi.
After a hungry process pi acquires all required
resources, it will send an inform message to all
processes in one hungry group ga ∈ Gi which
has the most privileges in all hungry groups,
where we say gk has more privileges than gl,
if xigl

igk
= 1. If group gb ∈ Gi, having more

privileges than ga, becomes hungry, before pi

receives an inform message from every process
in ga, pi sends a cancel message to each of ga.
A process pj in ga will send a delete message
to every process in ga to let them delete the
inform from pi, if pj receives cancel, before it
issues an inform to each of ga. Process pi will
send an inform to every process in gb, on receiv-
ing a delete message from pj . A process in ga

will execute ga’s task, if it receives an inform
from every process in ga, and discards cancel
messages received.
If any process receives a delete message is-

sued by another process which will issue an in-
form message to every process in the group af-
ter a delete message, every process in the group
will receive the delect message before the in-
form message, due to the FIFO property of a
channel. Thus none will execute the group’s
task. If a process receives an inform from every
other process, it means every other process has
sent the inform before receiving a cancel. Thus,
none of them will send a delete message. Conse-
quently, every process in the group will receive
an inform messages from all others, and exe-
cutes the group’s task. Therefore consistency
of the group is ensured.

6. Conclusion

In this paper, we have presented a general-
ization of the resource allocation problem and
a solution to the generalized problem.
Recently, opportunities for groups of peo-

ple or agents to work together on a computer
network are increasing. The demand for ap-
plications that support such works is growing
now and in the near future. The problem of
distributed resource allocation among process
groups can be considered as a building block
for such applications.
Comparing with our previous work, we re-

moved the restriction that no more than one
group may share a common process, so that
the new solution could be used by more appli-
cations.
Some future works are summarized as fol-

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 485

lows:
1. For a given set of processes, how to par-
tition the processes into groups is an in-
teresting problem and needs to be further
studied.

2. The time complexity of our solution needs
to be analyzed.

Acknowledgments The authors would
like to thank Dr. Yoshifumi Manabe and the
anonymous referees for their critical comments
which improve the paper a lot. The authors’
thanks also go to the staff and students at the
Computer Network Laboratory, Department of
Computer Software, University of Aizu, for
their valuable discussion and suggestions on the
work.

References

1) Chandy, K.M. and Misra, J.: The Drink-
ing Philosophers Problem, ACM Trans. Prog.
Lang. Syst., Vol.6, No.4, pp.632–646 (1984).

2) Barbosa, V.C.: An Introduction to Distributed
Algorithms, pp.233–240, MIT Press (1996).

3) Lynch, N.A.: Distributed Algorithms, Morgan
Kaufmann Publishers (1996).

4) Rhee, I: A fast Distributed Modular Algo-
rithm for Resource Allocation, Proc.15th Inter-
national Conference on Distributed Computing
Systems, pp.161–168 (1995).

5) Ginat, D., Shankar, A.U. and Agrawala, A.K.:
An Efficient Solution to the Drinking Philoso-
phers Problem and its Extensions, Proc. 3rd
International Workshop on Distributed Algo-
rithms, LNCS, Vol.392, pp.83–93 (1989).

6) Kakugawa, H. and Yamashita, M.: Local Co-
teries and a Distributed Resource Allocation
Algorithm, Trans. IPS Japan, Vol.37, No.8,
pp.1487–1496 (1996).

7) Lamport, L.: Time, Clock, and Ordering of
Events in a distributed System, Comm. ACM,
Vol.21, No.7, pp.558–565 (1978).

8) Maekawa, M.: A
√

N algorithm for mutual ex-
clusion in decentralized systems, ACM Trans.
Comput. Syst., Vol.3, No.2, pp.145–159 (1985).

9) Raynal, M.: A Distributed Solution to the
k-out of-M Resources Allocation Problem,
LNCS, Vol.497, pp.599–609, Springer-Verlag
(1991).

10) Baldoni, R.: An O(NM/M+1) distributed al-
gorithm for the k-out of-M resources allocation
problem, Proc. 14th ICDCS, pp.81–88 (1994).

11) Khiat, A. and Näimi, M.: Distributed Mu-
tual Exclusion in K-Groups Based on K-Logical
Rings, Proc. 11th Annual International Sympo-
sium on High Performance Computing Systems
(HPCS’97), pp.269–282 (1997).

12) Bar-Ilan, J. and Peleg, D.: Distributed Re-
source Allocation Algorithms, LNCS, Vol.647,
pp.277–291 (1992).

13) Huang, T. and Cheng, Z.: A Distributed Al-
gorithm for Optimal Allocation of Resources,
Proc. International Conference on Parallel and
Distributed Processing Techniques and Applica-
tions (PDPTA’97), pp.880–884 (1997).

14) Cheng, Z., Huang, T. and Shiratori, N.: A
Distributed Algorithm for Resource Alloca-
tion among Process Group, Proc. 9th Interna-
tional Conference on Information Networking,
pp.443–448 (1994).

15) Wada, Y., Cheng, Z. and Huang, T.: A Dis-
tributed Algorithm for Allocation of Resources
to Process Groups with Acyclic Graphs, Proc.
of the International Conference on Parallel and
Distributed Processing Techniques and Applica-
tions (PDPTA’97), pp.801–805 (1997).

16) Wada, Y., Cheng, Z. and Noguchi, S.: Dis-
tributed Algorithms for Allocation of Re-
sources to Process Groups and Their Complex-
ity, IEICE Trans. Information and Systems,
Vol.J81-D-I, No.6, pp.651–665 (1998).

17) Delgrossi, L.: Design of Reservation Protocols
for Multimedia Communication, p.119, Kluwer
Academic Publishers (1996).

Appendix

The formal description of the algorithm

Every process pi holds the following variables.
• A boolean variable xigl

igk
for each gk, gl ∈ Gi

(gk �= gl) is an element of the array A|Gi|,
where Gi ⊆ G is the set of groups to which
pi belongs.

• A boolean variable xjgl

igk
for each gk ∈

Gi, pj ∈ Neig i, gl ∈ Gj , where Neig i is the
set of processes, each of which competes for
some resource with pi.

• A boolean variable yj
i for each pj ∈ Neig i

to represent whether pi holds the fork com-
peted for by pi and pj .

• A boolean variable zj
i for each pj ∈ Neigi

to represent whether pi has postponed to
response to a pj ’s request for the fork com-
peted for by pi and pj . Initially zj

i = false
• A boolean variable hungry i is to represent

whether pi requires resources or not. Ini-
tially, hungry i = false;

• A boolean variable informedh
igk

for each
ph ∈ gk s.t. gk ∈ Gi to represent whether
pi has received an inform message from ph.
Initially, informedh

igk
= false;

486 Transactions of Information Processing Society of Japan Feb. 2000

• A boolean variable inform igk
to represent

whether pi has sent inform messages to
all processes in gk. Initially, inform igk

=
false;

The initial values of variables xigl

igk
, xjgl

igk
, and

yj
i are described in Section 3.1.
The types of messages used in the algorithm are
as follows:
• request : sent from pi to pj , which compete

for some resources with pi, to ask for the
fork.

• fork : sent from pi to pj , which compete for
some resources with pi, on pj ’s request.

• turn: sent from pi to pj , which compete
for some resources with pi, right after pi

finishes using the resources.
• inform: sent from a process pi ∈ gh to ev-

ery pj ∈ gh to let them know all resources
required by pi have been acquired.

Every process pi executes the following algo-
rithm.

When pi makes transition from thinking to hun-
gry
begin
hungry i := true ;
if yj

i = true for all pj ∈ Neig i then
if ∃gk ∈ Gi, ∀ph ∈ gk, informedh

igk
= true

then
Access()

else if ∃gk,
∀pj ∈ Neig i, ∀gl ∈ Gj , x

jgl

igk
= true

begin
send inform to all ph ∈ gk;
inform igk

:= true
end

else send request to every pj ∈ Neig i, such
that yj

i=false
end .

On receiving a request message from pj ∈ Neig i,
begin
if not hungry i

or not ∃gk ∈ Gi, ∀gl ∈ Gj , s.t.
∧
xjgl

igk
= true

then
begin
yj

i := false ;
send fork to pj ;
if hungry i then
send request to pj

end
else
zj
i := true

end .

On receiving a fork message from pj ∈ Neig i,
begin
yj

i := true ;
if yj′

i = true for all pj′ ∈ Neig i then
if ∃gk ∈ Gi, ∀ph ∈ gk, informedh

igk
= true

then
Access()

else if
∃gk, ∀pj ∈ Neig i, ∀gl ∈ Gj , x

jgl

igk
= true

begin
send inform to all ph ∈ gk;
inform igk

:= true
end

end .

On receiving an inform message from pj ∈ gk ∈
Gi

begin
informedh

igk
= true;

if (∃gk ∈ Gi, ∀ph ∈ gk informedh
igk

= true
and ∀pj ∈ Neig i, y

j
i = true) then

Access()
end .

On receiving a turn(gl) message from pj ∈
Neig i,
begin
∀gk ∈ Gi, x

jgl

igk
:= true ;

if (∃gk, ∀pj ∈ Neig i, ∀gl ∈ Gj , x
jgl

igk
= true

and ∀pj ∈ Neig i, y
j
i = true) then

begin
send inform to all ph ∈ gk;
inform igk

:= true
end

end .

Access(){
repeat
begin
if (inform igk

= false) then
begin
send inform to all ph ∈ gk;
inform igk

:= true
end

Access shared resources;
for all gl ∈ Gi s.t. gl �= gk do
xigl

igk
:= false; xigk

igl
:= true;

for all pk ∈ Neig i, gl ∈ Gk do
if xkgl

igk
:= true then

xkgl

igk
:= false;

for all pk ∈ Neig i, send turn(gk) to pk;

Vol. 41 No. 2 Distributed Resources Allocation to Overlapping Groups 487

∀ph ∈ gk, informedh
igk

:= false
end

until ∀g′k ∈ Gi, ∃ph ∈ g′k, informedh
ig′

k
= false

hungry i := false ;
if zj

i = true then
begin
zj
i := false ;
yj

i := false ;
send fork to pj

end
}

(Received November 17, 1998)
(Accepted November 4, 1999)

Zixue Cheng received the
M.E. and Ph.D. degrees from
Tohoku University in 1990 and
1993, respectively. He was an
assistant professor from 1993 to
1999 and has been an associate
professor since April, 1999, at

the Department of Computer Software, Univer-
sity of Aizu. Currently he is working on dis-
tributed algorithms, network agents, and dis-
tance education. Dr. Cheng is a member of
IEEE, ACM, and IEICE.

Yutaka Wada received B.S.
and M.S. degrees in computer
science and engineering from
the University of Aizu. He is
currently a Ph.D. candidate in
graduate school of computer sci-
ence and engineering, the Uni-

versity of Aizu. His primary research interests
are distributed algorithms, distributed applica-
tions, and computer networks. He is a student
member of the Information Processing Society
of Japan (IPSJ).

Yukiko Inoue joined the
University of Aizu in 1994 and
received the B.S. degree in 1998.
She was working in distributed
algorithms.

Yao Xue Zhang was born in
Hunan, China, on Jan. 5, 1956.
He received the B.S. degree in
electronic communication from
Xidian University, Xian, China,
in 1982. In 1986 and 1989, he re-
ceived the M.S. degree and the

Ph.D. degree in computer science from To-
hoku University, Japan, respectively. He joined
Tsinghua University in 1990 and has been a full
professor since 1993, at the department of Com-
puter Science, Tsinghua University, China. He
was a visiting scientist in Laboritory of Com-
puter Science MIT, U.S.A, in 1995, and a vis-
iting professor in University of Aizu, Japan,
in 1998, respectively. He is currently lead-
ing a research group to study network ar-
chitecture including management and control
method of Quality of Services provided by net-
works, protocol specification, synthesis, verifi-
cation and implementation method, network in-
terconnection including definitions of intercon-
nection protocol, routing algorithm, design and
implementation of routers for network intercon-
nection and protocol conversion method, infor-
mation system integration, and network appli-
cation software.

Shoichi Noguchi was born
in Tokyo on March 5th, 1930,
and received his B.E., M.E.,
and D.E. degrees in Electri-
cal Communication Engineering
from Tohoku University, Sendai.
He joined the Research Institute

of Electrical Communication at Tohoku Univer-
sity in 1960, and was a professor at the same
University from 1971 to 1993. Dr. Noguchi had
been Director of the Computer Certer, Tohoku
University, from 1984 to 1990 and Drector of
Research Certer for Applied Information Sci-
ence, Tohoku University, from 1990 to 1993.
He had been a professor of Faculty of Engineer-
ing, Nihon University, from 1993 to 1997. Dr.
Noguchi was the President of IPSJ (Informa-
tion Processing Society of Japan) from 1995 to
1997. He has been the President of the Uni-
versity of Aizu since April 1997. His main area
of interests is information science theory and
compuer network fundamentals. He has also
been active in the area of parallel processing,
computer network architecture, and knowledge
engineering fundamentals.

