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The leader election problem is a fundamental problem in distributed computing. The clas-
sical leader election problem can be considered as finding the processor with the maximum
key in a distributed network in which each processor has one key and a total order is defined
on the keys. In this paper, we define a generalized leader election problem that finds all the
processors with the maximal keys on the basis of a partial order on the keys. We propose two
distributed algorithms for the generalized leader election problem. The first algorithm solves
the problem on a network by using a spanning tree of the network. The message complexity
of the algorithm is O(mn), where m is the number of different keys and n is the number
of processors. The time complexity of the algorithm is O(n). The second algorithm solves
the problem using a coterie of the n processors. The number of messages exchanged on the
coterie is O(max{rn, n1.5}), where r is the number of the maximal keys. When the physical
network for connecting the n processors is considered, the message and time complexities of
the second algorithm are O(max{drn, dn1.5}) and O(d), respectively, where d is the diameter
of the network.

1. Introduction

The leader election problem is a fundamental
problem in distributed computing 1),6),11),13).
The problem is to find a processor in a dis-
tinguishable computational state among a set
of initial processors in the same computational
state in a distributed network. It can be sim-
plified as finding the maximum key among the
n keys held by n processors in the network,
where each processor has one key and a to-
tal order is defined on the keys. This problem
has numerous applications in many distributed
control problems such as those that may occur
when token-based algorithms are used: when
the token is lost or the owner has failed, the re-
maining processors elect a leader to issue a new
token.
In this paper, we consider a generalized leader

election problem. Given n processors in a net-
work, assume that each processor has one key
and that a partial order is defined on the n keys.
The generalized leader election problem is to
find all the maximal keys defined by the par-
tial order. Note that the previous algorithms
for the classical leader election problem do not
work for the generalized problem defined by a
partial order that is not linear.
The generalization is motivated by some dis-

tributed applications in computer-supported
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cooperative work and groupware that introduce
new distributed problems 3),7),15),18). Those ap-
plications are realized through the cooperation
of persons/processors interconnected by a com-
puter network. Each of the persons/processors
has a key characterized by multiple parameters.
The value of a parameter of one key can be
compared with that of the same parameter of
another key, but it cannot be compared with
the value of a different parameter. Considering
the parameters of a key as the character vector
of the key, the linear order on each parame-
ter then defines a partial order of the character
vectors of the keys. More specifically, let us
consider a group of persons working in a net-
work environment who are requested to make
proposals on a subject. Each person makes one
proposal and those proposals are evaluated and
selected in a distributed manner on the basis
of independent multi-parameters. The goal is
to select every proposal such that no other pro-
posal is superior to it in all parameters. Find-
ing the maximal character vectors is an example
of the generalized leader election problem, and
can be applied to distributed problems such as
group decision support systems and consensus
with partially ordered domain 7),15),18). Leader
election based on partially ordered keys is also
a natural generalization of the classical leader
election problem.
A straightforward algorithm for the general-

ized leader election problem is to have every
processor send its key to all the other proces-
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sors by flooding and then find the maximal re-
ceived keys. For a network with diameter d
and communication link set E, this algorithm
has the message complexity O(n|E|) and the
time complexity O(d) (see Lynch 11) for exam-
ple). We propose two distributed algorithms for
the generalized leader election problem on asyn-
chronous networks. The first algorithm solves
the problem for a network containing n pro-
cessors by using a spanning tree of the net-
work. The message complexity of the algorithm
is O(mn), where m is the number of different
keys. The time complexity of the algorithm is
O(n). Notice that a spanning tree of G(V,E)
can be found by using, for example, the algo-
rithm in Gallager, et al. 5) with message com-
plexity O(n logn + |E|) and time complexity
O(n logn). The algorithm based on the span-
ning tree takes fewer messages but more time to
find the maximal keys than the straightforward
one. The second algorithm solves the problem
for n processors by using a coterie of the pro-
cessors. The number of messages exchanged on
the coterie is O(max{rn, n1.5}), where r is the
number of maximal keys. If the n processors
are physically connected by a network of diam-
eter d, the message and time complexities of
the second algorithm are O(max{drn, dn1.5})
and O(d), respectively. In particular, when the
network is a complete graph, the message and
time complexities of the second algorithm be-
come O(max{rn, n1.5}) and O(1), respectively.
All the above algorithms can be initiated by

an arbitrary set of processors, and on the termi-
nation of the algorithms, every processor knows
all the maximal keys. These properties are im-
portant in many applications. For example, in
group decision support systems, each processor
should know which leader represents it.
In the rest of the paper, Section 2 gives the

preliminaries. The algorithms based on a span-
ning tree and a coterie are given in Sections
3 and 4, respectively. Some further research
problems are discussed in the final section.

2. Preliminaries

A distributed asynchronous network is a set
of processors connected by bidirectional com-
munication channels. We consider a net-
work with an arbitrary interconnection topol-
ogy. The network is denoted by an undirected
graph G(V,E), where V = {p1, p2, . . . , pn}
is the set of processors (called nodes) in the
network and E is the set of communication

channels (called edges) between the processors.
Each node pi ∈ V has one key denoted as ki.
There is no centralized controller, shared mem-
ory, or global clock in the network. Each pro-
cessor communicates with others by exchanging
messages through the communication channels.
Messages can be transmitted independently in
both directions on a communication channel
and arrive after an unpredictable but finite time
delay, without error, and in the FIFO order.
The complexity measures for evaluating the

algorithms are adopted from Barbosa 4). The
message complexity of an algorithm is the maxi-
mal number of messages sent between neighbors
during the computation on all possible topolo-
gies of G(V,E) and all possible executions of
the algorithm. We assume that the size of a
message is O(logn) bits. To define the time
complexity, we assume that the local compu-
tation (within each node) takes no time and
that communicating one message to one adja-
cent node takes O(1) time. The time complex-
ity of an algorithm is the number of messages in
the longest causal chain of the form “receive a
message and send a message as a consequence”
occurring in all executions of the algorithm
over all possible topologies of G(V,E). Obvi-
ously, the time complexity is always bounded
by the message complexity. For more details of
the complexity measures, readers may refer to
Barbora 4) (e.g., pp.81–83).
A partial order ≤ on the set S = {k1, . . . , kn}

is defined so that (1) ki ≤ ki, (2) ki ≤ kj and
kj ≤ ki imply ki = kj , and (3) ki ≤ kj ≤ kk

implies ki ≤ kk. For ki, kj ∈ S, if ki ≤ kj or
kj ≤ ki then we say ki and kj are comparable;
otherwise, we say they are uncomparable (de-
noted as ki <> kj). A key ki ∈ S is called
maximal if ∀kj ∈ S, ki ≤ kj implies ki = kj .
For ki, kj ∈ S, if ki ≤ kj and ki �= kj then
ki < kj . In what follows, we also say that ki is
covered by kj or ki is smaller than kj if ki < kj .
For ki, kj ∈ S with ki = kj and i �= j, ki and kj

are considered as the same key. We usem to de-
note the number of different keys of S (m ≤ n).
The generalized leader election problem con-

sidered in this paper is to find all the maxi-
mal keys defined by the partial order ≤ on S.
We propose two algorithms for this problem.
The first one uses a spanning tree of the net-
work to exchange messages. The spanning tree
has been used for constructing efficient algo-
rithms for many problems in distributed sys-
tems 14),16),19). We assume that a spanning tree
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of G(V,E) has been established and that each
node knows its neighbors in the spanning tree.
The second algorithm solves the problem on

a coterie of the processors in the network. A
coterie is a class C = {Qi|Qi ⊆ V } of subsets
of nodes that satisfies the following properties:
For any Qi and Qj with i �= j, Qi ∩Qj �= ∅ and
Qi �⊆ Qj . The subsets Qi are called quorums.
Coteries are logical structures for achieving co-
ordination among processors and have been
used in many distributed problems such as mu-
tual exclusion, replica control, and distributed
consensus (including leader election) 9),10),12).
Descriptions of how to construct a coterie can
be found, for example, in Agrawal and Jalote 2),
and Maekawa 12). We assume that a coterie
of V has been established and that each node
knows the other nodes in the same quorums.
In both algorithms, initially each node knows

only its own key. A set of arbitrary nodes start
executing the algorithms. On the termination
of the algorithms, each node knows all the max-
imal keys. The algorithms are described by the
template introduced in Barbosa 4).

3. The Algorithm on the Spanning
Tree

Assume that a spanning tree of G(V,E) has
been established and that each node knows its
neighbors in the spanning tree. The algorithm
follows a broadcasting strategy to solve the
problem: Every node pi broadcasts its key ki

over the spanning tree. Node pi finds the max-
imal keys among the keys it has received. To
reduce the message complexity, when a key ki

is known to be covered at some node of the tree,
that node stops broadcasting ki to its descen-
dants in the tree.
We now give a more detailed outline of the

algorithm. Each node pi ∈ V broadcasts its
key ki over the spanning tree. Each node that
receives ki sends a message to pi to acknowl-
edge the receipt. More specifically, each node
sends its key to its neighbors to start the broad-
casting. For each pi ∈ V , when pi receives
a key kl from its neighbor pj , it compares kl

with the other keys that it has received. If kl is
not covered by any other received key and pi is
not a leaf of the spanning tree, then pi records
(kl, pj) and sends kl to all its neighbors except
pj , from which kl was received. Otherwise (if ei-
ther kl is covered by some received key or pi is a
leaf), pi stops broadcasting kl to its descendants
and sends a message (kl, ack) to pj . For each

recorded (kl, pj), when pi receives (kl, ack) from
all its neighbors except pj , it forwards (kl, ack)
to pj . When pi receives (ki, ack) from all its
neighbors, pi knows that the broadcasting of
its key has been completed. We assume that
the information identifying the index i of key
ki is sent with ki during the broadcasting.
Each leaf node pi of the spanning tree, when

its broadcasting is completed, starts to check
whether the broadcasting for every node of V
has been completed. If so, then each node of
V finds the maximal keys among the received
keys and terminates its computation.
The algorithm for each node pi ∈ V is given

in Fig. 1. An arbitrary subset V0 of nodes ini-
tiate the computation.
We assume that each node pi has the follow-

ing states, and use a variable statei to represent
pi’s current state.
• idle: the node has not started the compu-

tation.
• active: the key of the node is being broad-

casted over the spanning tree.
• wait-terminate: the broadcasting of the key

has been completed and the node is waiting
for the global terminate message.

• terminated: the whole computation has
been completed.

For each node pi, let Ni be the set of neighbors
of pi in the spanning tree and Si be the set of
keys that pi has received. Initially, each node
pi is in idle state and Si = {ki}. In addition,
every pi employs the following variables:
termi: an integer representing the number of
wait-terminate messages received from pi’s ad-
jacent nodes (0 ≤ termi ≤ |Ni|).
parentli: an adjacent node from which pi re-
ceived key kl.
ackl

i: an integer representing the number of (l,
ack) messages received from pi’s adjacent nodes
(0 ≤ ackl

i ≤ |Ni|).
The following types of messages are used by

the algorithm:
• (kl, l) is a pair of key kl and node pl.
• (l, ack) is an acknowledge message to pl,

indicating that broadcasting of kl has been
finished.

• check-terminate is a message to check
whether every node has entered the wait-
terminate state.

• terminate is a message to announce that
every node has entered the wait-terminate
state.

Theorem 1 The algorithm given in Fig. 1
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Algorithm Leader Election on Tree:
� Variables: statei = idle;

termi = 0; Si = {ki};
for 1 ≤ j ≤ n, parentli = nil, ackl

i = 0.
� Input: msgi = nil.

Action if pi ∈ V0:
statei :=active;
send (ki, i) to all u ∈ Ni.

� Input: msgi = (kl, l) from pj ∈ Ni.
Action:

if statei = idle then
{statei := active;
send (ki, i) to all u ∈ Ni;};

if ∀km ∈ Si, km < kl

or km <> kl then
{if km < kl then

Si := (Si ∪ {kl}) \ {km}
else Si := Si ∪ {kl};
if |Ni| = 1 then

send (l, ack) to pj

else {send (kl, l)
to all u ∈ (Ni \ {pj});
parentli := pj ;}};

else send (l, ack) to pj .
� Input: msgi = (l, ack) from pj ∈ Ni.

Action:
ackl

i := ackl
i + 1;

if l = i and acki
i = |Ni| then

statei :=wait-terminate;
if l 
= i and ackl

i = |Ni| − 1 then
send (l, ack) to parentli.

� Input: msgi = nil.
Action when statei =wait-terminate

and |Ni| = 1:
send check-terminate to u ∈ Ni.

� Input: msgi =check-terminate
from pj ∈ Ni.

Action:
termi := termi + 1;
if termi = |Ni| − 1

and statei =wait-terminate then
send check-terminate
to the node of Ni from which
check-terminate is not received;

if termi = |Ni|
and statei =wait-terminate then
{send terminate to all u ∈ Ni;
find all the maximal keys
from those of Si based on ≤;
statei := terminated;}.

� Input: msgi = terminate from pj ∈ Ni.
Action when statei 
= terminated:

send terminate to all u ∈ Ni \ {pj};
find all the maximal keys
from those of Si based on ≤;
statei := terminated.

Fig. 1 Algorithm for leader election on a spanning
tree.

solves the generalized leader election problem
on a network with an arbitrary interconnec-
tion topology in O(mn) message complexity
and O(n) time complexity, where m is the num-
ber of different keys and n is the number of
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Fig. 2 When ki = kl, nodes b and a stop broadcasting
ki and kl to their descendants, respectively.

processors.
Proof: First, note that the broadcasting for
every node is completed in a finite time. As-
sume that pi is a node with key ki maximal.
Then for any key kl with kl �= ki, either kl < ki

or kl <> ki. If kl �= ki for all l �= i then the
broadcasting for ki is completed (the state of
pi becomes wait-terminate) only after pi has
received (ki, ack) from all the leaf nodes of the
spanning tree, which implies that every node in
the tree has received ki. Assume that kl = ki

for some l �= i. Let Vi = {pl|kl = ki}. The
states of all the nodes of Vi then become wait-
terminate only after every node in the tree has
received ki. It is also easy to check that mes-
sage terminate is broadcast only after the states
of all the nodes in the tree have become wait-
terminate. Therefore, when a node receives the
message terminate, it has received all the max-
imal keys. Thus, the algorithm solves the prob-
lem correctly.
The message complexity for broadcasting a

key ki that is different from any other key is
O(n). For the keys ki = kl (i �= l), let Ei and
El be the sets of edges of the tree on which ki

and kl have traveled during the broadcasting,
respectively. Then |Ei ∩ El| ≤ 1 (see Fig. 2).
From this, the message complexity for broad-
casting the key of the nodes in Vi = {pl|kl = ki}
is O(n). The message complexity for broad-
casting check-terminate and terminate is O(n).
Thus, the message complexity of the algorithm
is O(mn), where m is the number of different
keys.
Obviously, the number of messages that cause

all the nodes in the network to start broadcast-
ing their own keys is at most n − 1. That is,
the time complexity for all nodes to enter active
state is at most n−1. For any nodes pi and pj ,
the messages for broadcasting the key of pi and
the messages for broadcasting the key of pj are
sent concurrently. Therefore, it takes at most
2(n− 1) time steps from the active state to the
wait-terminate state for all nodes. It is easy to
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see that to check the global termination of the
algorithm also takes O(n) time. Thus, the time
complexity of the algorithm is O(n). ✷

If multiple nodes hold the same maximal key,
the algorithm find that key as a leader. More
specifically, if pi and pl hold the same key (i.e.,
ki = kl), and that key is maximal, then all
nodes know this maximal key. However, some
nodes know that the maximal key comes from
node pi while others know that it comes from
pl. In some applications, we may further need
to identify a particular node among those nodes
that hold the maximal key. Let ki be a maximal
key and let Vi = {pl|kl = ki}. We can use the
following approach to identify a unique node of
Vi. A total order < is defined on Vi such that
pi < pj if and only if i < j. On the basis of the
total order, the classical leader election problem
on Vi can be defined. On the termination of the
algorithm in Fig. 1, the nodes of Vi with ki as
their maximal key identify a unique node by us-
ing an algorithm for the classical leader election
problem on the set Vi. The message complex-
ity of identifying a unique node of Vi is O(n) on
the spanning tree. Therefore, the message com-
plexity of identifying a unique node for every
maximal key is O(rn), where r is the number
of maximal keys. Notice that r ≤ m. The time
complexity of the above process is O(n).

4. The Algorithm on the Coterie

Several coteries on n processors have been
proposed. In this paper, we use the coterie
introduced by Agrawal and Jalote 2), which
is constructed as follows. Assume that n =
m(m− 1)/2 for some integer m. Create a com-
plete graph Km with vertices {1, 2, . . . ,m} and
n edges {(i, j)|i, j ∈ {1, 2, . . . ,m}, i �= j}. Per-
form a one-to-one mapping from the set of n
nodes of V to the n edges of Km. For each ver-
tex i of Km, let Ei be the set of edges incident
to i. A quorum Qi is defined as the set of nodes
that are mapped to the edges in Ei. The coterie
is defined as C = {Qi|i is a vertex of Km}. For
example, let V = {p1, p2, . . . , p6} and let the
one-to-one mapping between V and the set of
edges of K4 be
(p1, (1, 2)), (p2, (2, 3)), (p3, (3, 4)),
(p4, (4, 1)), (p5, (1, 3)), (p6, (2, 4)).
Then we get the coterie
C = {{p1, p4, p5}, {p1, p2, p6},

{p2, p3, p5}, {p3, p4, p6}}.
Given a coterie C = {Q1, . . . , Ql} of n nodes,

for each node pi, let Ii = {j|pi ∈ Qj} and

Ci = ∪j∈Ii
Qj . For the coterie C on V =

{p1, p2, p3, p4, p5, p6} given above,
C1 = {p1, p4, p6, p2, p5},
C2 = {p2, p6, p3, p1, p5},
C3 = {p3, p6, p2, p5, p4},
C4 = {p4, p5, p3, p1, p6},
C5 = {p5, p1, p2, p3, p4},
C6 = {p6, p2, p3, p1, p4}.

We Now show that the coterie employed in
our paper indeed satisfies the intersection prop-
erty. The coterie is created on the basis of a
complete graph. For every vertex, a quorum
that is a set of nodes mapped to the edges inci-
dent to the vertex is created. Since every pair
of vertices are incident to a common edge in a
complete graph, every pair of quorums have a
common node, i.e., ∀Qi, Qj ∈ C, Qi ∩Qj �= φ.
Moreover, since a communication set Ci is

the union set of quorums to which process pi

belongs, every pair of communication sets Ci

and Cj have at least one common node.
Assume that each node pi knows the nodes

of Ci. An outline of the algorithm is as fol-
lows. Each node pi ∈ V sends its key ki to
the nodes of Ci. (We assume that the infor-
mation identifying the index i of key ki is sent
with ki to the nodes of Ci.) For each node pi,
when pi receives the keys from all the nodes of
Ci, pi finds the maximal keys from the received
keys. For each received key kj , if kj is max-
imal then pi sends the message uncovered to
pj ; otherwise, pi sends the message covered to
pj . When pi receives covered from some node
of Ci, pi knows that its key ki is not maximal
and pi enters the wait-terminate state. When
pi receives uncovered from all the nodes of Ci,
pi knows that its key ki is maximal and broad-
casts ki to all nodes of V via the coterie. Each
node of V sends pi a message via the coterie
to acknowledge receipt of ki. When pi has re-
ceived acknowledgments from all the nodes of
V , it enters the wait-terminate state.
If there are kj , kl ∈ S with kj = kl max-

imal and j �= l, then the maximal key kj

may be broadcast by nodes pj and pl. This
is not efficient in the sense of message com-
plexity. We use the following approach to re-
duce the number of messages. For each node
pi ∈ V and each key kj received by pi, define
Vij = {pl|pl ∈ Ci, kl = kj}. If node pi finds
that kj is maximal among the received keys, it
selects only one node of Vij for broadcasting kj .
More precisely, pi sends uncovered to the node
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of Vij with the largest index and covered to all
the other nodes of Vij .
For each node pi ∈ V , when pi enters the

wait-terminate state, it starts to check whether
all the nodes of V are in the wait-terminate
state. If so, pi terminates its computation.

Figure 3 gives the algorithm for each node
pi. To simplify the description of the algorithm,
when we say node pi sends a message to all
nodes of Ci, we mean that the message is sent
to all the nodes, including pi itself, of Ci. An
arbitrary subset V0 of nodes initiate the com-
putation. We assume that each node pi has the
following states:
• idle: the node has not started the compu-

tation.
• active: the node is finding the maximal

keys.
• wait-terminate: the node is waiting for the

global terminate message.
• terminated: the whole computation has

been completed.
The following types of messages are employed

in the algorithm. A covered message is used
to inform pi that ki has been covered by some
other key. An uncovered message is used to
inform pi that ki has not been covered by any
key it has been compared with. In order to
broadcast the maximal key ki, (ki,max) and
(ki,max, f) are used. (ki,max) is sent by pi to
all pj ∈ Ci. The maximal key ki is forwarded
by pj , using (ki,max, f), to all the nodes that
are not in Ci. In addition, (ki, ack) is the ac-
knowledgment of (ki,max, f), and ack is the ac-
knowledgment of (ki,max). In order to detect
termination, check-termination is used to check
whether every process in Ci has entered the
wait-terminate state, and termination is used
to announce the termination of the algorithm.
In addition to statei and Si, as used in the

algorithm in Fig. 1, the following variables are
employed. Maxi is a set of maximals known to
pi. Variable maxi is the number of uncovered
messages received by pi, (0 ≤ maxi ≤ |Ci|).
If maxi = |Ci|, pi knows that ki is max-
imal. The variable term1i shows the num-
ber of check-terminate messages received by
pi. (0 ≤ term1i ≤ |Ci|). The condition
term1i = |Ci| indicates that every process in
Ci has entered the wait-terminate state. The
variable term2i shows the number of terminate
messages received by pi, (0 ≤ term2i ≤ |Ci|).
The condition term2i = |Ci| means that ev-
ery process in the coterie has entered the wait-

Algorithm Leader Election on Coterie:
� Variables: statei = idle; Si = {ki};

Maxi = ∅; maxi = 0;
term1i = 0; term2i = 0; ack1i = 0;

for 1 ≤ j ≤ |Ci|, ack2j
i = 0.

� Input: msgi = nil.
Action if pi ∈ V0:

statei :=active;
send ki to all u ∈ Ci.

� Input: msgi = kj from pj ∈ Ci.
Action:

Si := Si ∪ {kj};
if statei = idle then

{statei := active;
send ki to all u ∈ Ci;};

if |Si| = |Ci| then
{find the maximal keys from Si;
∀kj ∈ Si, if kj is maximal

and j = max{l|pl ∈ Vij} then
send pj uncovered

else send pj covered;}.
� Input: msgi = covered from pj ∈ Ci.

Action when statei = active:
statei :=wait-terminate;
send check-terminate to all u ∈ Ci;

� Input: msgi = uncovered from pj ∈ Ci.
Action when statei = active:

maxi := maxi + 1;
if maxi = |Ci| then

send (ki, max) to all u ∈ Ci.
� Input: msgi = (kj , max) from pj ∈ Ci.

Action:
Maxi := Maxi ∪ {kj};
send (kj , max, f) to all u ∈ (Ci \ Cj).

� Input: msgi = (kl, max, f) from pj ∈ Ci.
Action:

Maxi := Maxi ∪ {kl};
send (kl, ack) to pj .

� Input: msgi = (kl, ack) from pj ∈ Ci.
Action:

ack2l
i := ack2l

i + 1;
if ack2l

i = |Ci \ Cl| then
send ack to pl.

� Input: msgi = ack from pj ∈ Ci.
Action:

ack1i := ack1i + 1;
if ack1i = |Ci| then

{statei :=wait-terminate;
send check-terminate to
all u ∈ Ci;}.

� Input: msgi =check-terminate
from pj ∈ Ci.

Action:
term1i := term1i + 1;
if term1i = |Ci| then

send terminate to all u ∈ Ci;
� Input: msgi = terminate from pj ∈ Ci.

Action:
term2i := term2i + 1;
if term2i = |Ci| then

{statei := terminated;
terminates the computation;}.

Fig. 3 Algorithm for leader election on a coterie.
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terminate state. The variable ack1i shows the
number of ack messages received by pi, (0 ≤
ack1i ≤ |Ci|). The variable ack2j

i shows the
number of (kj , ack) messages received by pi,
(0 ≤ ack2i ≤ |Ci\Cj |).

Theorem 2 The algorithm in Fig. 3 solves
the generalized leader election problem. The
number of messages exchanged on the coterie
is O(max{rn, n1.5}), where r is the number of
maximal keys. If the n processors are physi-
cally connected by a network of diameter d, the
message and time complexities of the algorithm
are O(max{drn, dn1.5}) and O(d), respectively.
Proof: We first show the correctness of the al-
gorithm. Let pi and pj be any two nodes of V .
The definition of the coterie guarantees that Ci

and Cj have a common node pk. Since both pi

and pj send their keys ki and kj to pk, these two
keys are compared there. Therefore, the key ki

is compared with all the other keys. After this,
if ki is not covered by any key then it is max-
imal; otherwise it is not. Let kj be a maximal
key. If for all kl with l �= j, kl �= kj then node
pj receives only uncovered and kj is broadcast
to all nodes of V . If there are keys kj1 , . . . , kjl

with kji
= kj and ji �= j (1 ≤ i ≤ l), then

one node (whichever has the largest index) of
pj and pj1 , . . . , pjl

receives only uncovered and
kj is broadcast to all nodes of V . Obviously, all
the maximal keys are found and broadcast to
every node of V in a finite time.
Each node pi whose key ki is maximal, enters

the wait-terminate state only after all the nodes
of V have received ki. pi sends a terminate mes-
sage only after all the nodes of Ci have entered
the wait-terminate state. Therefore, pi termi-
nates only after all nodes of V have received
all the maximal keys. Obviously, the algorithm
terminates in a finite time.
The number of messages for determining

whether ki is maximal for all pi ∈ V is
O(
∑n

i=1 |Ci|) on the coterie. The number of
messages for broadcasting one maximal key ki is
O(|Ci| +

∑
pj∈Ci

|Cj |). Assume that k1, . . . , kr

are the maximal keys. Then the number of
messages for broadcasting all the maximal keys
is O(

∑r
i=1(|Ci|+

∑
pj∈Ci

|Cj |)) and number of
messages for termination is O(

∑n
i=1 |Ci|). Us-

ing the coterie of Agrawal and Jalote 2), |Ci| =
O(

√
n) for 1 ≤ i ≤ n.

From this, the number of messages for termi-
nation and determining whether ki is maximal
for all pi ∈ V is

O

(
n∑

i=1

|Ci|
)

= O(n1.5).

The number of messages for broadcasting r
maximal keys is

O


 r∑

i=1


|Ci|+

∑
pj∈Ci

|Cj |



 = O(rn).

Thus, the number of messages on the coterie
is O(max{rn, n1.5}), where r is the number of
maximal keys.
If n processors are physically connected by a

network of diameter d then the message com-
plexity for exchanging one message on the co-
terie is O(d) and the message complexity of the
algorithm becomes O(max{drn, dn1.5}).
Since all nodes send their keys (also the cov-

ered or uncovered messages) to the nodes in
the communication sets concurrently, there are
O(1) messages in the causal chain determin-
ing the maximal keys on the coterie. Similarly,
there are O(1) messages in the causal chain for
broadcasting the maximal keys and detecting
the global termination. It takes O(d) time in a
real network of diameter d to send one message
on the coterie. Therefore, the time complex-
ity of the algorithm is O(d) on a network with
diameter d. ✷

5. Conclusion

In this paper, we have proposed a general-
ized leader election problem based on partially
ordered keys. We showed that this problem
can be solved efficiently on a distributed net-
work by using either a spanning tree of the net-
work or a coterie of processors. For the clas-
sical leader election problem based on totally
ordered keys, the problem can be solved within
a message complexity of O(n logn) on a com-
plete connected network 8) or a logical structure
called k-dimensional arrays of the nodes 17).
The transitive property of the linear order is
critical for achieving the message complexity
bound of O(n logn). For the partial order ≤,
two keys may be uncomparable; furthermore,
the uncomparable relation <> is not transitive
(for example, we do not know the relation be-
tween ki and kl if we do not compare them,
even though the information that ki <> kj and
kj <> kl is known). Because of the property of
the relation <>, the algorithms of Korach, et
al. 8) and Yuan and Agrawala 17) do not work
for the generalized leader election problem. Let
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r be the number of the maximal keys and m
be the number of different keys of the n proces-
sors in a network. If r = m then the message
complexity O(mn) of our first algorithm is opti-
mal, because it takes Ω(rn) messages to deliver
the r maximal keys to the n nodes. However,
whether O(mn) can be reduced further is open
for r < m. For solving the problem on a logical
structure of n processors such as a coterie or
k-dimensional array, when r ≥ n0.5, the num-
ber of messages O(rn) of our second algorithm
is optimal. Whether O(n1.5) can be reduced
further for r < n0.5 is another open question.
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