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Network-wide Distributed Object-oriented Systems

Michiharu Takemoto†

This paper describes the implementation of a fault-tolerant mechanism in a CORBA-
compliant object request broker (ORB). This mechanism manages the object replicas, thereby
enabling non-stop facilities. It hides the internal structure of fault-tolerant objects and is im-
plemented as an object adapter (OA) on the ORB, not as an ordinary object. Because
it combines fault detection using the local timer of each node and maintenance for inter-
nal state consistency, the overhead is reduced. Evaluation of the mechanism’s performance
demonstrated that it is suitable for a distributed object-oriented processing environment be-
cause it uses only low-overhead functions, such as message transfer, and not high-overhead
functions, such as the dynamic invocation interface/dynamic skeleton interface (DII/DSI).
This mechanism was developed for use in the distributed processing environment (DPE) of
telecommunication networks in which continuous operation and connectivity to other systems
are needed.

1. Introduction

Future multimedia communication services
will require processing platforms that afford
high performance while reducing the cost of
equipment and application development. To
support such platforms, my group has been
developing a network architecture we call dis-
tributed object-oriented network architecture,
short for DONA 1). DONA has many features
suitable for future communication services. For
example, it is “open” in the sense that ob-
jects in other networks can connect with ob-
jects in a DONA network. To bring this open-
ness to the DONA distributed processing envi-
ronment (DPE), we are using CORBA technol-
ogy 2) to make a DONA object request broker
(ORB). In other words, the DONA ORB will
be a CORBA-compliant ORB.
An ORB consists of an ORBCore and object

adaptors (OAs). The application software on
the ORB consists of objects. Each object en-
capsulates data and its functions (operations).
These operations are invoked by request mes-
sages. An OA controls the execution behavior
of objects. Because an object interacts with
other objects only when passing messages, an
object cannot directly access the internal space
of any other object. The objects provide ser-
vices by communicating with each other, even
though they do not know each other’s internal
structures. Each object has an object reference
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that is used to distinguish it from other objects.
Each object reference includes a node identi-
fier and information about the object that dis-
tinguish it from the other objects in the node.
When an object sends a message to another ob-
ject, it includes its object reference so that the
receiver object can identify the sender object.
Because the objective of using a DONA-DPE

is to develop multimedia communication sys-
tems, it is important for the DONA-DPE to
have facilities enabling continuous operation
(i.e., non-stop facilities), even if part of the sys-
tem fails. For example, a node (host) failure
should be recovered automatically. Because an
extremely large number of objects can be ex-
ecuted simultaneously on one node, we must
avoid using non-stop facilities whose implemen-
tation requires a large number of objects. In
other words, the overhead used to achieve con-
tinuous operation should be as small as possi-
ble.
Traditional switching systems are distributed

and have the non-stop facilities because their
execution environments are designed for a spe-
cial purpose. This concept of specialization
does not fit well with using a standard DPE
like CORBA.
Our group previously developed a prototype

DONA ORB. I have now implemented a mech-
anism that provides the objects with non-stop
facilities on this ORB. This mechanism is based
on the concept of “replication”. The unit of a
replica is an object. In this paper I describe
my evaluation of this replica-mechanism and its
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performance.
When replicas are used in a system to im-

prove fault-tolerance, their internal states must
be kept consistent. This is because a domino
effect among restarting objects may occur in a
distributed processing system if an appropriate
restart strategy is not used. Our mechanism
overcomes this problem by using appropriate
checkpoints and replicated messages.
In this paper I assume that all operations of

objects are deterministic. A “failure” is a situ-
ation in which one or more operations of one or
more objects seem to be stopped by the node or
the “thread”☆ stops. Failures in the communi-
cation layer are out of the scope of this paper.
My goal here is to explain how to make a sys-
tem “non-stop”, that is, how to keep a system
running even when some of its objects fail.
In Section 2, I describe the requirements for

fault-tolerance in telecommunication applica-
tions. In Section 3, I describe our replica-
management mechanism for meeting these re-
quirements, and in Section 4, I describe its im-
plementation. In Section 5, I discuss the mech-
anism we used in comparison to other models.
In Section 6, I describe our experiment to mea-
sure its performance and that of other models.
In Section 7, I evaluate the results, and in Sec-
tion 8, I discuss the relationship to the CORBA
specifications. In Section 9, I conclude with a
brief summary and a mention of future work.

2. Requirements of Telecommunica-
tion Systems

Telecommunication systems have special re-
quirements for non-stop facility related to their
characteristics and usage. In this section I
discuss the requirements for introducing fault-
tolerance to such a system.

2.1 High Performance
Telecommunication systems 3) are real-time

systems requiring high performance. There-
fore, performance reduction should be avoided
when supplying the system with a non-stop fa-
cility. For example, a mechanism with a compli-
cated object structure and requiring a number
of message passings degrade real-time facility
and throughput. It is therefore not suitable for
telecommunication systems, even if non-stop fa-
cility is achieved theoretically.
☆ What is used to implement the “thread” is out of

the scope of this paper. An example entity of a
“thread” is a process or a POSIX thread of UNIX
or a task of RT-OS.

Switching systems for conventional tele-
phone-call processing must handle thousands of
calls at the same time and respond to most
events within tens or hundreds of millisec-
onds 4). Consider a system designed to handle
300,000 calls per hour (about 83 calls per sec-
ond). Assume that the conventional call pro-
cessing consists of five objects and that half the
messages among these objects depend on the
mutual connectivity of their ORBs. The ORBs
must therefore handle about 200 inter-ORB
messages per second, with a round-trip time
of about 5,000 microseconds. Although these
values are for traditional call processing, fu-
ture telecommunication systems will have sim-
ilar values.
Felber, et al.5) proposed a model and imple-

mented it as a mechanism that achieves non-
stop facility. However, its performance was in-
sufficient for telecommunication systems. This
mechanism is evaluated in Section 5.3.

2.2 Space Redundancy and Warm
Passive Replication

Making a system fault tolerant requires intro-
ducing redundancy. There are several ways of
introducing redundancy; I believe the best way
is to use space redundancy and warm passive
replication.
There are two basic types of redundancy:

time redundancy (rollback) and space redun-
dancy (replication). Because the services pro-
vided in telecommunication systems operate
through the interactions of several objects,
when a failure occurs, it is better to switch the
executing unit rather than performing a large
rollback, which requires selecting an appropri-
ate rollback point from many checkpoints.
There are two alternative models for replica-

management: active replication 6) and passive
replication 7)∼9).
In active replication, all the replicas of one

object execute the same operation in the same
order. Therefore, there is no need for special
functions to maintain the internal states among
the replicas. Moreover the recovery time when a
failure occurs is shorter. However, active repli-
cation requires extra CPU resources for execut-
ing more than one object for each logical object.
This extra performance capability is generally
wasted during normal operation.
In passive replication, on the other hand, sev-

eral functions are introduced to maintain inter-
nal state consistency among the replicas. While
this results in a longer recovery time, the execu-
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tion cost during normal operation is generally
lower. Passive replication is thus preferred be-
cause the failure rate of current telecommunica-
tion systems is low and because it is important
to reduce the overhead for ordinary execution.
Passive replication can be classified into two

types depending on how the internal states of
the replicas are managed. One type is warm
passive replication (no execution but the inter-
nal states are kept consistent), and the other is
cold passive replication (no execution and the
internal states are not kept consistent). Be-
cause it is (almost) always necessary to keep
the internal states consistent in warm passive
replication, the cost of ordinary execution is a
bit higher. In cold passive replication, becaust
the internal states are not kept consistent, a
mechanism is needed to re-create the internal
states for the re-execution. Implementing such
a mechanism in a network-wide DPE is thus
expensive. Therefore, I selected warm passive
replication.
Although passive replication is formally a

type of space redundancy, failure recovery also
needs some time redundancy. I achieve this by
setting the checkpoints when maintaining the
internal states; a suitable rollback point is se-
lected from these checkpoints when a failure oc-
curs.

2.3 Server-side Implementation
The software used for telecommunication ser-

vices consists of several objects. If the de-
velopers of such objects design them to ex-
change internal information, problems may oc-
cur because objects must sometimes communi-
cate with objects developed by other compa-
nies (network providers and service providers).
When a server object starts its operation, no
one knows which kind of client objects may
communicate with the server.
Consequently, if we change the functions of

a server to achieve non-stop facility, we should
design to objects to reveal their interfaces, not
their internal states, to clients. Therefore, for
the objects consisting of the telecommunica-
tion services, the server-side implementation of
fault-detection and fault-recovery is important.
Even if the non-stop facilities are on the

server side, objects with fault-tolerant facilities
should be able to be handled in the same man-
ner as ordinary objects, i.e., having their inter-
nal structure hidden and being identified only
by a logical name.
In the oppsite situation, the non-stop facili-

ties are on both the client side and the server
side or they use common functions for clients
and servers.
An example common functions is to use a

daemon that checks the heart beat of thread.
Ericsson proposed a mechanism for checking
whether the server is “alive” by using a “ping”
operation 10). This mechanism includes a lan-
guage processor whose function is to add a spe-
cial operation (ping) to the server. However, it
is not suitable for telecommunication systems
because it cannot set an appropriate time-out
value for each operation. Moreover, determin-
ing the appropriate rollback point is compli-
cated 11),12) because the relationships between
objects in telecommunication systems are very
complicated.
Another approach is to locate a mechanism

on both sides so as to extend the object ref-
erence, which includes the structure of the
server. Several mechanisms have been pro-
posed to add information to the object refer-
ence 13),14). When a failure occurs, the client
or the ORB of the client explicitly changes the
server replica. Therefore, the function for this
change must be implemented on the client side.
This is not possible in telecommunication sys-
tems, in which the server and client sides share
only the interface of an object.

2.4 High Concurrency
Telecommunication services generally con-

sists of a number of “small” objects, which are
objects whose memory-footprint is small and
whose operation execution-time is short. Note
that this is different from other applications,
such as numerical computation, in which each
operation execution-time is long and the num-
ber of objects is not so large. Therefore, the
effect of mechanisms for fault-tolerance on the
concurrency must be as smaller as possible be-
cause several objects usually run on each node
in telecommunication systems.
As described in Section 2.2, space redun-

dancy is more suitable than time redundancy.
If the replica-management mechanism requires
expensive execution cost, the total concur-
rency is low. A replica-management mechanism
that does not interfere with the concurrency
of the node is preferable. In short, a replica-
management mechanism that is simpler and has
a smaller execution cost is desirable. For exam-
ple, a mechanism that minimizes the number of
messages associated with increased redundancy
will be simpler and less expensive to operate.
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If the management entity is an actual ordi-
nary object, assigning one management object
to each replica group is not suitable because it
increases the number of objects, which degrades
concurrency.
As we mentioned, switching systems for con-

ventional call processing must handle thou-
sands of calls at the same time, and future
telecommunication systems will have to handle
the same level of concurrency.

3. Proposed Replica-management
Mechanism

To meet these requirements, we previously
proposed a replica-management mechanism
called FTARO (Fault-Tolerance based on Asyn-
chronous Replicated Objects)15). FTARO
uses space redundancy (Section 2.2). Because
FTARO is on the server side (Section 2.3), the
objects on FTARO can connect to any type
of client. The replica-management mechanism
of FTARO is built with a message-transferring
mechanism in the ORB and does not affect
object concurrency (Section 2.4). How well
it meets the requirement for high performance
(Section 2.1) is discussed in Section 6.

3.1 Object Definitions
I defined several objects for use in FTARO.

A group of objects that have a fault-tolerant
facility and that behave as one object is called
a fault-tolerant object. An object that is in-
cluded in a fault-tolerant object and that is a
replica for space redundancy is called a repli-
cated object. The target operations of a fault-
tolerant object are executed by one of its repli-
cated objects. A replicated object that executes
the target operations is called an active repli-
cated object. The remaining replicated objects
are called stand-by replicated objects. For the
other components (replica-management mecha-
nisms and nodes), active and stand-by are used
with the same meanings.

3.2 Object Execution
The structure of a fault-tolerant object in

FTARO is shown in Fig. 1. A fault-tolerant
object includes one active replicated object
(RO1 ), which executes the target operations,
and several stand-by replicated objects (RO2 ),
which have been created but do not execute the
target operations, they only wait. Hereafter,
for simplicity, I assume that there is only one
stand-by replicated object.

3.2.1 Message Reception
A message from an external object (EO ) is

operation

Check message time

Fault-tolerant object

Logical message

m1

N0

N1

N2

T0

M0
M1

M2

PO
RO1

RO2

EO

EO   ... External object

RO1 ... Active replicated object
RO2 ... Stand-by replicated object

PO   ... Pseudo-manager object

Physical message flow

mt

distribute/dispatch

T0    ... Conversion table (from PO to RO1, RO2)

m2

N0, N1, N2 ... Node (host) m1, m2, mt ... FTARO message

Fig. 1 Fault-tolerant object in FTARO.

not directly sent to RO1. This is because the
node information in the object reference of a
fault-tolerant object does not specify on which
node RO1 is located. Instead, it specifies a dif-
ferent node (N0 ). When EO sends a message
to the fault-tolerant object using the object ref-
erence of the fault-tolerant object, the message
reaches node N0. If the replica-management
mechanism (M0 ) of node N0 determines that
the target object is a fault-tolerant object, M0
obtains the object reference of RO1 from the
conversion table (T0 ), then, rather than dis-
tributing the message to the object on it, M0
transfers the message to node N1 for RO1. In
this message-transfer process, M0 simultane-
ously sends a replica of the message (m2 ) to the
replica-management mechanism (M2 ) of RO2.
After the replica-management mechanism

(M1 ) of RO1 receives the message, it dis-
tributes the message to RO1, and RO1 executes
the target operation.
Because EO does not send the message di-

rectly to RO1, the fault-tolerant object does not
need to notify EO about any changes of RO1.
Whether replicated object is an active or stand-
by one is internal information, so that informa-
tion is not shared. This is advantageous in a
large distributed system in which each server
object must communicate with many types of
objects.

3.2.2 Internal-state-consistency
Checking and Fault Detection

When RO1 finishes an operation, control is
returned to the ORB.M1 sends a message (mt )
to M2, that includes at least two types of infor-
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mation☆. One type is used for updating the
internal states of RO2, and the other is used
for notifying M2 of the termination of the op-
eration execution of RO1. M2 uses this infor-
mation to change the internal states of RO2.
By using time-out with these two messages

(m2 and mt ), a fault in RO1 or its node can
be detected. This detection is processed on
the server side. No information leaks from the
server side to the client side and no information
from the client side is needed.
Because this fault-detection is done by M2 of

RO2, when M2 detects a failure, it changes the
stand-by replicated object to an active repli-
cated object and restarts to execute the opera-
tion from the beginning. FTARO thus uses two
redundancy models—space redundancy (pas-
sive replication of objects) and time redun-
dancy (small rollbacks).

3.2.3 Replica Management Model
From the viewpoint of the message flow, an

imaginary object can manage replicated objects
(RO1 and RO2 ). Let us call this imaginary
object (shadow) a pseudo-manager object. In
Fig. 1, it is shown as PO. When registering a
fault-tolerant object to the name service, the
object reference and name of PO are regis-
tered. When EO wants to contact the fault-
tolerant object, EO contacts PO via the name
service. This enables the fault-tolerant object
to be dealt with flexibly, although the actual
structure is a group of more than two objects.

3.2.4 Reduction in the Number of
Messages

The number of messages inevitably increases
when redundancy is introduced into a system.
To achieve high performance, however, the in-
crease should be minimized. FTARO includes
a facility for combining messages. For exam-
ple, two messages for maintaining internal-state
consistency and a pair of messages for fault-
detection with time-out can be combined. The
number of messages is thus lower than when
the functions for passive replication are imple-
mented separately.

4. Implementation of FTARO
on CORBA-compliant ORB

4.1 Execution Model of CORBA-
compliant ORB

The process of invoking a target operation via

☆ The message can also include the load on the node,
useful information for load-balancing.

skeleton

object key = "Tom"

Object adapter (OA)

.......

.......

.......

operation 
"withdraw"

.......

.......

.......

operation
 "deposit"

"Mike"

ORBCore

Node

...

...

...

...

...

...

Node

Logical
message

dispatch

ORB

IDL
interface account {
   long deposit(...) ;
   long withdraw(...) ;
} ;

ORB distribute

Fig. 2 Execution model of CORBA-compliant ORB.

messaging on CORBA-compliant ORB is illus-
trated in Fig. 2. The object interface is defined
using the interface definition language (IDL).
The interface name is “account”, and the op-
erations are “deposit” and “withdraw”. When
a message reaches the ORBCore the ORBCore
delivers the message to the appropriate OA.
The OA analyzes the message header to obtain
the object key (the name of the object) (“Tom”)
of the target object. It then distributes the mes-
sage to the target object. In the target object,
the skeleton code is used to analyze the message
to obtain the target operation (“withdraw”),
then, it dispatches to the target operation.

4.2 Implementation of FTARO
As described in Section 3, FTARO is a

message-transferring mechanism invoked on the
condition that the target object is a fault-
tolerant object. The structure of our current
implementation of the FTARO mechanism is
shown in Fig. 3. It includes the following func-
tions (the numbers correspond to those in the
figure).

1. Detect fault-tolerant object. The
replica-management mechanism of the pseudo-
manager object determins whether the target
object is a fault-tolerant object by checking the
object key, which is included in the request mes-
sage header.

2. Convert the object reference. The
replica-management mechanism of the pseudo-
manager object converts the object reference
for the fault-tolerant object to that for the ac-
tive and stand-by replicated objects. The con-
version table can be implemented in the OA
because the conversion is based only on the re-
lationships among replicated objects.
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Fig. 3 Structure of current implementation.

3. Replicate and send messages.
After replicating the message, the replica-
management mechanism of the pseudo-manager
object sends one copy to the active replicated
object for target operation and the other to the
replica-management mechanism of the stand-by
replicated object.

4. Retain messages. The replica-
management mechanism of the stand-by repli-
cated object stores the replicated message re-
cieved from the pseudo-manager object. It de-
tects whether the message is a replicated one
needed for restart by using the object reference
of the target object in the message header.

5. Detect failure. To detect the fail-
ure of the active replicated object, the replica-
management mechanism of the stand-by repli-
cated object measures time since the message
from the pseudo-manager object is received un-
til the message from the active replicated object
is received. If the latter message is not received
before a specified time, it judges that the active
replicated object has failed.

6. Maintain internal consistency. To en-
able restart from the beginning of an operation
if a failure occur in the active node, the replica-
management mechanisms maintain the same in-
ternal states between the active and stand-by

replicated objects. At the end of each opera-
tion, the replica-management mechanism of the
active replicated object sends a message to up-
date the internal state of the stand-by repli-
cated object. The current internal state is re-
set based on the latest retained message and
the previous internal state.

7. Restart operation. When the replica-
management mechanism of the stand-by repli-
cated object judges that the active replicated
object has failed, it restarts the operation by
using the latest retained message with the pre-
vious internal state. it only distributes the re-
tained message to the stand-by replicated ob-
ject.
Because all of these functions are invoked by

messages, they can all be implemented on the
OA, especially around the message-distributing
functions. There is no need to modify the
operation-dispatching functions in the skeleton
code.
I implemented these functions on a DONA

CORBA 2.1-based ORB. The DONA ORB has
only one OA, a basic object adapter (BOA),
and uses the IIOP-1.1 communications proto-
col.
I modified the BOA into a FTARO-OA,

which is completely upward compatible with
the BOA in that it has all the BOA interfaces.
The only difference is that the FTARO-OA can
invoke several special functions depending on
the message. I placed this FTARO-OA on top
of the ORBCore.
Because the FTARO-OA has all the inter-

faces of the BOA with the same semantics, an
external object can communicate with an or-
dinary object and with a fault-tolerant object.
A mutual connection can be established even
if the communication partner object is running
an other CORBA-compliant ORB.
Moreover, application program developers

can create fault-tolerant objects on FTARO
without being aware of the existence of the
replicas. This function is supplied by the
language-processing system and works as fol-
lows. Directives are given that specify the pa-
rameters used by FTARO to convert the origi-
nal source code, into the specialized code used
by FTARO.
The boxes marked with an “*” in Fig. 3 are

those used in an ordinary OA. When a message
is for an ordinary object, these boxes and the
corresponding condition checking are executed.
Note that the current implementation is not
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optimized, so the performance is less than that
possible. For example, the “replicate message”
box (3) in Fig. 3 is implemented by using copies
of the memory buffer for the request message.
The program code for this box could be opti-
mized.

5. Mechanism

5.1 Alternatives
I focused on two key factors in comparing

FTARO with the alternatives. One is the exe-
cution entity of the replica-management mecha-
nism and the other is the location of the replica-
management mechanism.
When we consider the execution entity of the

replica-management mechanism on the ORB,
we have only two alternatives: the ORB itself
or an actual ordinary object. I selected the for-
mer for my implementation. FTARO was im-
plemented on a CORBA-compliant ORB as the
OA. The reason for this selection is described
in Section 5.3.
When we consider where to locate the replica-

management mechanism, we have only two al-
ternatives. One is that one replica-management
mechanism is given per fault-tolerant object,
and the other is that one replica-management
mechanism is given per node. The former
means the location is a logical group. The
latter means the location is a physical group.
I selected the latter: one replica-management
mechanism is given per node.
I have analyzed this mechanism model

under three alternatives: (1) the replica-
management mechanism is an actual ordi-
nary object per fault-tolerant object, (2) the
replica-management mechanism is an actual or-
dinary object per node, and (3) the replica-
management mechanism is in the ORB.

5.2 Points to Consider
Let us consider which alternative is best

suited for requirements described in Section 2.
The space-redundancy (Section 2.2) and server-
side implementation (Section 2.3) requirements
have already been met. We now need to
consider high concurrency (Section 2.4). Al-
though performance (Section 2.1) cannot be
precisely evaluated without an actual imple-
mentation, it is worth while to also consider
performance when comparing mechanisms. In
my comparison I thus considered the effect of
the replica-management mechanism on concur-
rency. (The situation in which the replica-
management mechanism is in the ORB was

Active
replicated
object

Stand-by
replicated
objectManager

object

Fault-tolerant object

Fig. 4 An actual ordinary object managing
replicated objects.

found to be a better choice.) I also considered
the performance of the replica-management
mechanism. This means at which level the
replicas are managed. (Achieving the replica-
management mechanism as an actual ordinary
object was found to be the worse choice. This
is because the model needs the operation-
dispatching functions to be executed.)

5.3 Comparison
The properties of the models in Section 5.1

are now compared. Implementation examples
in a CORBA environment are also described.
(1) As Fig. 4 shows, an actual ordinary man-

ager object can manage a single group of
replicated objects. Because the manager
object is an ordinary object, the OA must
distribute messages to the manager object
and the skeleton code must dispatch the
operations. Compared with the replica-
management mechanism of the ORB (3),
this distribution and dispatching adds a
new overhead to the system. Moreover,
when the number of groups of the repli-
cated objects is increased, the number of
manager objects must be increased. This
degrades concurrency severely. Although
this model has these two disadvantages, it
also has an advantage. The manager ob-
ject does not need to analyze the interface,
including the operation name and the ar-
guments, because it is fixed.

(2) As Fig. 5 shows, an actual ordinary man-
ager object can also manage all the repli-
cated objects its the node. Because there
is only one manager object per node with
this model, the effect for concurrency of
the manager objects remains small when
the concurrency of the other objects in-
creases. This model, however, has the same
disadvantage of the first model (distribu-
tion and dispatching in the manager ob-
ject), plus implementation in a CORBA en-
vironment entails a large overhead. When
implementing this model in a CORBA en-
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Table 1 Three models of replica-management.

Location
Entity Logical (per FT* object) Physical (per node)
Actual ordinary object (1) impairs concurrency (2) impairs performance, e.g., OGS
ORB (3) does not impair concurrency and performance, e.g., FTARO

* fault-tolerant

Stand-by
replicated
object

Manager
object

Node

Manager
object

Manager
object

Fault-tolerant object

Active
replicated
object

Fig. 5 An actual ordinary object managing all the
replicated objects on its node.

vironment, we must use the dynamic invo-
cation interface/dynamic skeleton interface
(DII/DSI) mechanism because this type of
manager object must receive all types of in-
terfaces. When the operation of the man-
ager object is activated, it gets informa-
tion about the target object (meaning the
replicated object) from the interface repos-
itory (IR). This information includes the
interface name, the operation name, and
the argument types of the target object.
Then, it analyzes the information, forms
a new request for the target object, and
sends the request message. Felber’s object
group service (OGS)5) is a typical example
of this model. Because this model must use
a dynamic interpretation of the arguments.
The execution is thus costly.

(3) A replica-management mechanism in the
ORB manages all replicated objects on a
node. Because the replica-management
mechanism is located in the ORB, distri-
bution and dispatch are unnecessary, so
concurrency is not affected even when the
number of replicated objects is increased.
FTARO is a typical example of this model
on CORBA. FTARO is only a message-
transfer mechanism. It does not need to
analyze the interfaces; it simply needs to
analyze the message headers in order to
transfer messages.

Table 1 summarizes these models. To ob-
tain high concurrency and high performance,
the replica-management mechanism should be
located in the ORB. These static evaluations
thus lead us to conclude that FTARO is suit-

able for telecommunication systems.

6. Performance

I measured the performance mainly in rela-
tion to the requirement for high performance
(Section 2.1). It will be measured in relation
to the requirement for high concurrency (Sec-
tion 2.4) in the near future.

6.1 Experiment
In Section 5 I compared the performance

of three alternative replica-management mod-
els and concluded that the replica-management
mechanism in the ORB managing all replicated
objects on a node ((3) in Section 5.3) may be
suitable for telecommunication systems. How-
ever, until I measure the overhead with this
model, I cannot conclude that the model is re-
ally suitable.
I implemented FTARO on a DONA ORB as

described in Section 4.2 in order to measure
its performance. Using Felber’s OGS distri-
bution☆, I can measure the performance of an
OGS on an ORB.
The CORBA IDL interface I used (Fig. 6)

had very simple operations: set (registration
of data into a two-dimensional matrix) and get
(acquiring of data). To evaluate the effect of
the number of arguments, I used four additional
set operations (set13, set23, set33, and set43 ),
each with a different number of arguments. The
added arguments were dummies and were sim-
ply passed to the server, so their behavior are
the same as that of set.
These experiments were run on a SUN

Ultra1 workstation (UltraSPARC 167MHz,
Solaris 2.5.1).
The two models tested were as follows.
- FTARO was implemented as the OA
of a DONA ORB. The fault-detection
((5) in Fig. 3 and Section 4.2) and fault-
recovery, which run on the stand-by
replica-management mechanisms, were not
implemented. However, because all the
functions needed on the active replica-

☆ Available at http://lsewww.epfl.ch/OGS (Oct.
1998).
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interface grid {
void set(in short x, in short y, in long data) ;
long get(in short x, in short y) ;
void set13(in short x, in short y, in long data, in long dummy1,,, in long dummy10) ;
void set23(in short x, in short y, in long data, in long dummy1,,,,, in long dummy20) ;
void set33(in short x, in short y, in long data, in long dummy1,,,,,,, in long dummy30) ;
void set43(in short x, in short y, in long data, in long dummy1,,,,,,,,, in long dummy40) ;

} ;

Fig. 6 Sample interface (IDL).

Table 2 Measured time of OGS vs. FTARO.

DONA ORB CORBA product

measured
direct

FTARO
direct

OGShomogeneous
time

commun. commun.
433.73 2801.63 899.158 37845.1

ratio(*) 6.46 42
heterogeneous

measured
direct

FTARO
direct

OGS(directly communicate
time

commun. commun.
with client in another 1117.91 3694.09 – –
CORBA product) ratio(*) 3.30 –

unit time: µ sec.
(*) ratio of the round-trip time to that of direct communication.

management mechanisms for ordinary ex-
ecution were implemented—for example,
operation invocation and internal state no-
tification and updating—the latency of the
ordinary execution could be measured.

- Felber’s OGS was implemented on a com-
mercial CORBA product based on the pol-
icy that the OA and ORBCore could not
be changed. This implementation used IR
and DII/DSI.

To reveal the overhead, I measured the
round-trip time for operation invocation in a
direct-communication situation, i.e., the client
and server were connected directly via ordinary
CORBA-compliant ORBs. This means invo-
cation was simple without management of the
replicas.
To reveal the effect of changing clients, I mea-

sured the round-trip time under two types of
situations—homogeneous and heterogeneous.
In the homogeneous situation, the server and
client were running on the same ORB. In the
heterogeneous situation, the client was running
on a different ORB than the server’s one.

6.2 Results
The execution times were measured as the

average round-trip time for each operation in-
vocation as seen from the client side.
OGS I used needs an OGS mechanism on

both the server and client side, a conventional
client on an other commercial CORBA ORB
cannot connect to the server on the OGS.

Table 2 shows the result of the performance
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Fig. 7 Increase in the round-trip time with the num-
ber of arguments, for operations set, set13,
set23, set33, and set43.

measurement by using operations with few ar-
guments (set and get ). Each execution time
was the average time of set and get, and was
normalized by the execution time for the di-
rect communication, so I obtained the ratio of
the round-trip time to that of direct commu-
nication. As shown in Table 2, the overhead
FTARO (about 6.5) is smaller than that of OGS
(about 40).

Figure 7 shows the results of the perfor-
mance measurement by using operations with
several arguments (set, set13, set23, set33, and
set43 ). As shown in Fig. 7 there was little ef-
fect on the round-trip time when the number
of arguments was increased with FTARO, but,
there was a large effect when the OGS mecha-
nisms with DII/DSI and IR were used.
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7. Evaluation

The results of my experiment (Section 6)
confirmed those of the comparison (Section 5).
FTARO imposes less overhead than the alterna-
tives. Although this experiment was performed
on a general-purpose workstation and the mech-
anism has not been optimized, my finding that
the round-trip time when using managed repli-
cas was less than 5,000 microseconds (Table 2
and Fig. 7) indicates that FTARO can meet the
requirement for high performance (Section 2.1).
My finding that a client on another CORBA-

compliant ORB can connect to an object run-
ning on FTARO shows that the implementation
of FTARO is fully on the server side. FTARO
thus meets the requirement for server side func-
tions (Section 2.3).
The ratio of the FTARO round-trip time to

the direct round-trip time was less than 10.00
(Table 2) because FTARO is only a message-
transferring mechanism in the ORB. As I de-
scribed in Section 4, FTARO can be imple-
mented in such a way that the whole message
is not analyzed in the ORB. Instead, each mes-
sage is passed through an additional node (a
pseudo-manager node). In other words, neither
distributing to the target object nor dispatching
to the target operation is needed. Therefore,
the execution cost of the replica-management—
for example, converting the object references
and replicating the messages—is small. The
small execution cost of the replica-management
is linked to the small overhead.
In contrast, the overhead of OGS is huge

because it must use the DII/DSI components.
Therefore, if we implement the OGS mecha-
nism by using ordinary objects on a CORBA-
compliant ORB without modifying the ORB,
we must implement the DII/DSI and IR compo-
nents. This results is huge overhead as follows.
When a message reaches the manager object,
the manager object must obtain the interface
information (the type and value of each argu-
ment) for the requested operation from the IR
each time. Then the manager object must an-
alyze the sent data with this information and
form DII/DSI requests for the active replicated
object. This analyzing and forming process is
an interface interpreter.
In particular, as Fig. 7 shows, the advantage

of FTARO increases with the number of ar-
guments. While another mechanism (OGS)
must interpret each argument in the message,

FTARO need not analyze all the arguments; it
only needs to analyze the message header. In
other words, the overhead of FTARO depends
on only the size of the request message, so the
contents of the request message have little ef-
fect on overhead. Even if the message has struc-
tures and other types complicated arguments,
there is little effect on overhead. This is ob-
vious because the replica-management mecha-
nism of FTARO does not have any functions for
interpreting arguments. However, the overhead
of the interpreting mechanism depends on the
type and size of the operation in the request
message. If the client calls an operation whose
arguments include several structures, the over-
head of the replica-management mechanism is
larger.
The FTARO mechanism and its implemen-

tation I have described in this paper are inde-
pendent of the types of arguments. In telecom-
munication applications, some operations may
have very complicated arguments, including
structures, unions, and also Anys, in which any
type of value can be stored. Therefore, FTARO
is more suitable for telecommunication applica-
tions.
Although the current implementation of

FTARO is not yet completed, the results so far
indicate that it has sufficient performance.

8. Relationship to OMG
Fault-tolerance Specification

Object Management Group (OMG) is cur-
rently drafting a specification for “fault tol-
erant CORBA”16). The aim is to describe
several fault-tolerant models that require min-
imum ORB modification and can be imple-
mented using servers. The execution effect is
out of the scope of their specification.
Our current implementation of FTARO en-

ables a client that does not follow the “fault
tolerant CORBA” specification but does follow
the ordinary CORBA specification to access a
fault-tolerant server object.
Even though only one fault-tolerant model

can be used, it can be changed on-the-fly by
changing the pseudo-manager object, that is,
the information in the ORB.

9. Conclusion

In this paper I described the FTARO replica-
management mechanism for fault-tolerant ob-
jects in distributed object-oriented telecommu-
nication systems. FTARO can flexibly handle
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fault-tolerant objects because it is completely
on the server side. It does not effect concur-
rency.
I also described my implementation of

FTARO on a CORBA-compliant ORB. I mea-
sured the performance of a fault-tolerant ob-
ject on FTARO and compared it with that on
a different replica-management mechanism. I
found that the overhead of FTARO is smaller.
Moreover, FTARO is more tolerant of higher
numbers of operation arguments. Therefore,
FTARO is suitable for telecommunication sys-
tems.
We plan to optimize the implementation of

FTARO based on the POA-based CORBA-
compliant ORB 17) and to evaluate how well
it meets the requirement for high concurrency.
We will also develop processing-language sys-
tems that can automatically generate FTARO
fault-tolerant objects
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