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QoS-oriented Computation in Multimedia Objects
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and Makoto Takizawa†

A multimedia object supports methods for manipulating the multimedia data it contains.
A method changes not only the state of the object but also the QoS of the state. We discuss
new equivalent and conflicting relations among methods with respect to QoS. We also discuss
a locking scheme for objects.

1. Introduction

Distributed applications are composed of var-
ious kinds of multimedia objects. An object is
realized by an encapsulation of data and meth-
ods for manipulating the data. CORBA 11) is
becoming a general framework for realizing dis-
tributed applications. The service supported by
the object is characterized by parameters show-
ing the quality of service (QoS ), such as the
frame rate. Takizawa, et al. 13) model a move-
ment of a mobile object as a change in the QoS
supported by the object.
To support applications with service, an ob-

ject uses methods. A method may change not
only the state of the object but also the QoS
supported by the object. Relations among the
methods have hitherto been discussed with re-
spect to the states of the objects. For example,
a pair of methods are compatible if the states
obtained by performing the methods in any or-
der are the same 1). In this paper, we discuss
types of relations among the methods with re-
spect to the QoS. For example, suppose that a
state s2 is obtained by dropping some frames
in a state s1 of a multimedia object. If the
state s2 satisfies the applications’ requirements,
s2 is equivalent with s1. In addition, there are
two aspects of QoS, namely state QoS and view
QoS. The state QoS means the QoS that the
state of the object intrinsically supports. On
the other hand, the applications can view the
QoS of the object only through the methods.
It takes a long time to perform methods on

multimedia objects. The throughput of the sys-
tem is decreased if each method is mutually
exclusively performed. We discuss a new se-
rialization lock and mutually exclusive lock for
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each method based on QoS-based conflicting re-
lations among the methods. The serialization
locks are used to serialize conflicting methods,
while the mutually exclusive locks are used to
perform methods mutually exclusively.
The effects obtained by performing methods

have to be removed if they do not satisfy ap-
plications’ requirements. This can be done by
compensation8),12) of the methods performed.
It takes time to restore a large volume of multi-
media data such as high-resolution video data.
We can reduce time taken to recover the system
if data with lower resolution but satisfying the
applications’ requirements are restored instead
of restoring the state. In this paper, we discuss
a compensation method whereby an object is
surely rolled back to a state supporting a QoS
that satisfies the requirements, not the previous
state.
In Section 2, we present a system model. In

Sections 3 and 4, we discuss conflicting relations
among the methods based on QoS and how to
lock objects.

2. System Model

2.1 Objects
A system is composed of multiple objects. An

object o is an encapsulation of data and a col-
lection of abstract methods op1, . . . , opl through
which alone o can be manipulated. There are
two types of object, class and instance. A class
gives a set of attributes and collection of meth-
ods. An instance is a tuple of values each of
which is given to each attribute of the class.
From now on, an “object” means an instance
in this paper. Each object is uniquely identified
by an object identifier (oid). The states, that
is, the values of the object, can be changed by
the methods, but its oid is never changed.
On receipt of a request message with a

method opt, opt is performed in an object o.
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opt(s) shows a state obtained by performing opt

on a state s of the object o, and [opt(s)] is the
response. For example, [display(s)] shows an
image displayed on a monitor or printer from a
state s of a multimedia object. opt ◦ opu means
that opu is performed after opt is terminated.
Here, a method opt conflicts with a method opu

if opt ◦ opu(s) �= opu ◦ opt(s) for some state s of
the object o 8). For example, a method record
conflicts with delete in an object movie. opt

is compatible with opu unless opt conflicts with
opu. We assume that the conflicting relation is
symmetric.
An object is composed of other objects. For

example, a scene object is composed of objects
showing a person, car, road, and background.
In MPEG-4, multimedia data are composed of
multiple objects such as audio/video objects
(AVOs) and sound objects.

2.2 Quality of Service (QoS)
Applications obtain service supported by an

object o through the methods of the object
o. Each service is characterized by parameters
such as the level of resolution. The a quality
of service (QoS) supported by the object o is
given by the parameters.
The scheme of QoS is a tuple of attributes

〈a1, . . . , am〉 (m ≥ 1). Let dom(ai) be a domain
of an attribute ai, that is, a set of possible val-
ues to be taken by ai (i = 1, . . . ,m). A QoS in-
stance q of the scheme 〈a1, . . . , am〉 is given in a
tuple of values 〈v1, . . . , vm〉 ∈ dom(a1) × . . .×
dom(am). Let ai(q) show value vi of an at-
tribute ai in the QoS instance q. Let S be
a set of QoS instances. A QoS value v1 pre-
cedes another one v2 (v1 � v2) in dom(ai) if
v1 shows a better QoS than v2. For example,
120× 100 	 160× 120 [pixels] for the attribute
resolution. q1 totally dominates q2 iff q1 and q2
have the same scheme 〈a1, . . . , am〉 and ai(q1) �
ai(q2) for every attribute ai. Let A be a sub-
set 〈b1, . . . , bk〉 of the QoS scheme 〈a1, . . . , am〉
where bj ∈ {a1, . . . , am} (j = 1, . . . , k) and
k ≤ m. A QoS instance q1 of a scheme A1

partially dominates q2 of A2 iff a(q1) � a(q2)
for every attribute a in A1 ∩ A2. q1 dominates
q2 (q1 � q2) iff q1 partially dominates q2 and
A1 ⊇ A2. Let S be a set of QoS instances whose
schemes may be different. A QoS instance q1 is
minimal in S iff there is no QoS instance q2 in
S such that q2 	 q1. q1 is minimum iff q1 	 q2
for every q2 in S. q1 is maximal iff there is no
q2 in S such that q1 	 q2. q1 is maximum iff
q2 	 q1 for every q2 in S. A least upper bound

reducing
QoS

reducing
QoS

30 [fps]

s

20 [fps]

s1

s′
reality

s′ = super(s)

Fig. 1 State-equivalent states (s ≈ s1).

(lub) q1 ∪ q2 is some QoS instance q3 in S such
that 1) q1 	 q3 and q2 	 q3, and 2) there is
no instance q4 in S where q1 	 q4 	 q3 and
q2 	 q4 	 q3.
Applications require an object o to support a

QoS which is referred to as its requirement QoS
(RoS ). Let r be a RoS instance. Here, suppose
an object o supports a QoS instance q. If q � r,
the applications can get enough service from q.
Here, q is referred to as satisfy r. Otherwise, q
is less qualified than r.

2.3 QoS of an Object
In this paper, we assume that objects support

the same type of media. Real objects in the real
world support the maximum, possibly infinite,
level of QoS. A real object is realized in a com-
puter by reducing the QoS of the object. Thus,
each state s′ of the real object is realized by
mapping the maximum level of QoS to the lim-
ited level depending on the capabilities of the
computer, that is, Q(s′) � Q(s). The state of
the real object is referred to as the super state.
Let super(s) denote the super state of a state s
of an object o that is realized in the computer.
We assume that there exists exactly one super
state for each state s.
[Definition] A state s1 is state-equivalent with
s2 of an object o (s1 ≈ s2) iff super(s1) =
super(s2). ✷

For example, suppose that a state s1 of the
object video supports video data with a frame
rate of 30 fps (Fig. 1). Suppose that a new state
s2 with a frame rate 20 fps is obtained by drop-
ping some frames in the state s1. If s2 ≈ s1, s1
and s2 are derived from the same super state s′
by reducing the QoS, but they support different
levels of QoS. Let SE(s) be an equivalent set
{s1 | s1 ≈ s} for a state s. Every state in SE(s)
has the same super state. Practically speaking,
s1 ≈ s2 if s1 could be obtained from another
state s2 by changing the QoS of s2.
The QoS of an object o has two aspects: state

QoS, which shows the QoS of a state of o,
and view QoS, which is obtained by perform-
ing a method of o. For example, let us con-
sider an object video with a method display as
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Fig. 2 QoS of video object.

shown in Fig. 2. A state s of the object video
supports video data with a frame rate 30 [fps]
and 32 [colors]; that is, its state QoS Q(s) =
〈30 [fps], 32 [colors]〉. The method display can
display the view [display(s)] of the video data
on the monitor from the state s only at a rate
of 20 fps; that is its view QoS Q([display(s)])
= 〈20 [fps], 32 [colors]〉. Here, there is a con-
straint “Q([display(s)]) 	 Q(s)” for every state
s of an object o. The object o cannot sup-
port applications with a higher QoS than the
methods can support. If Q([opt(s)]) ≺ Q(s) for
some state s of the object o, opt is less quali-
fied. opt is fully qualified if Q([opt(s)]) = Q(s)
for every state s of o. Here, suppose movie sup-
ports two versions old-display and new-display
of display. new-display can display video data
at a faster rate than old-display. new-display
is considered to be the same as old-display be-
cause the methods output the same image data
and do not change the state of movie. How-
ever, they support different levels of QoS, that
is, Q([old-display(s)])	 Q([new-display(s)]) for
every state s of movie.
[Definition] A method opt is more qualified
than another method opu of an object o iff
Q([opt(s)]) � Q([opu(s)]) and opt(s) is state-
equivalent with opu(s)(opt(s) ≈ opu(s)) for ev-
ery state s of the object o. ✷

The applications cannot differentiate states
s1 and s2 if [opt(s1)] = [opt(s2)] in the object o,
because the applications view s1 and s2 as the
same through opt. A state s1 is opt-equivalent
with a state s2 in an object o iff [opt(s1)] =
[opt(s2)] for a method opt.
[Definition] A state s1 is method-equivalent
with a state s2 of an object o iff [opt(s1)] =
[opt(s2)] for every method opt of o. ✷

Since there are two aspects of objects, namely
states and QoS, each object supports two types
of primitive methods, a state method for ma-
nipulating the state of the object and a QoS
method for manipulating the QoS of the ob-
ject. drop is a QoS method because drop only
changes the QoS of the object video. For a
QoS method opQ, opQ(s) is state-equivalent

state
opS

s s1

s2 s3

op

QoS

opQ

Fig. 3 Transition diagram.

with every state s of an object o (opQ(s) ≈ s),
but Q(opQ(s)) �= Q(s). For a pair of QoS
methods opt and opu, opt(s) ≈ opu(s) and
[opt(s)] ≈ [opu(s)] for every state s of an ob-
ject o because they only change the QoS of the
object o. On the other hand, for a state method
opS , Q(opS(s)) = Q(s) while s �= opS(s). For
example, a method add appends some image
data in video but does not change the QoS.
Figure 3 shows a transition diagram where
a node shows a state and a directed edge in-
dicates a state transition. A horizontally di-
rected edge “s → s1” indicates that a state s
is transitted to a state s1 by a state method.
Here, Q(s1) = Q(s). A vertically directed edge
“s → s2” shows that s2 is obtained from s by
changing the QoS of s through a QoS method.
Here, s ≈ s2. A public method changes not
only the state but also QoS of the state. In
Fig. 3, an edge s→ s3 denotes that op changes
both the state and QoS.

3. QoS Relations among Methods

3.1 Equivalency
We discuss how methods op1, . . ., opl sup-

ported by an object o are related with respect
to the QoS. A method opt is equivalent with
another method opu in an object o iff opt(s) =
opu(s) and [opt(s)] = [opu(s)] for every state s
of o. That is, opt and opu not only output the
same response data but also change the state of
the object o to the same state.
An object movie is composed of two subob-

jects: advertisement and content objects. The
advertisement object is removed from movie by
a method delete. The movie obtained from the
original version m1 is the updated version m2.
An application does not take only account of
the difference between the versions m1 and m2

of movie, since it is interested only in the con-
tent of movie. m2 is considered to be equivalent
with m1 from the application’s point of view.
m1 and m2 support the same QoS.
[Definition] A state s1 is semantically equiva-
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Fig. 4 Semantically equivalent methods.
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Fig. 5 Internet karaoke object.

lent with s2 of an object o (s1 ≡ s2) iff super(s1)
and super(s2) are considered to be the same by
the application. ✷

Suppose that an application considers a pair
of super states s′t and s′u of an object o to be
the same. Suppose st = opt(s) and su = opu(s)
for a state s of the object o. States st and
su are obtained by reducing QoS of s′t and s′u,
respectively, and Q(st) = Q(su) (Fig. 4). Here,
st is semantically equivalent with su (st ≡ su).
[Definition] A method opt is semantically
equivalent with opu in an object o (opt ≡ opu)
iff opt(s) ≡ opu(s) for every state s of o. ✷

Suppose that a class c is composed of sub-
classes c1, . . . , cm (m ≥ 0). An application
specifies whether each ci is mandatory or op-
tional for the class c. If ci is mandatory, an
object o of c is required to include an object oi

of ci. If ci is optional, the object o may not
include oi. For a pair of objects o1 and o2 for
a class c, a state s1 of o1 is defined to be se-
mantically equivalent with a state s2 of o2 iff
the subobjects o1i and o2i for every mandatory
subclass ci have the same state in s1 and s2,
respectively. The optional subclass ck can take
any state.
Let us consider an Internet karaoke object

K (Figure 5) composed of multimedia sub-
objects, namely music, words, and background

s

s′

opt

opu

st

su

R

R : RoS

st ≡R su

Q(st) � Q(su)

Fig. 6 RoS-equivalent methods.

objects (AVOs), which are realized by using
MPEG-4 10). K supports a pair of methods
sound1 and sound2. The method sound1 plays
sound data music while displaying a back-
ground bg1 with words. sound2 plays sound
data music while displaying words and back-
ground video bg2 that includes an object car.
Here, let s1 and s2 be states obtained by per-
forming sound1 and sound2 on K, respectively.
Suppose an application is interested only inmu-
sic and words but not in background. Here, mu-
sic and words are mandatory, but background
is optional in K. s1 and s2 are semantically
equivalent (s1 ≡ s2), although s1 �= s2 and
Q(s1) = Q(s2). Hence, sound1 is semantically
equivalent with sound2 (sound1 ≡ sound2 ).
Let R be RoS. The application does not

take account of the display speed of the ob-
ject movie. Two methods old-display and
new-display are considered to be equivalent
with respect to R if they support a QoS sat-
isfying R, even if Q ([old-display(smovie)]) �=
Q ([new-display(smovie)]) for every state smovie

of movie.
[Definition] A state st is RoS-equivalent with
a state su on RoS R (st ≡R su) in an object
o iff Q(opt(s)) ∩ Q(opu(s)) � R and opt(s) is
state-equivalent with opu(s) (opt(s) ≈ opu(s))
for every state s of o. ✷

[Definition] A method opt is RoS-equivalent
with a method opu on RoS R in an object
o(opt ≡R opu) iff opt(s) ≡R opu(s) for every
state s of o. ✷

In Fig. 6, st(= opt(s)) ≈ su(= opu(s)) be-
cause super(st) = super(s) = s′. If Q(st) and
Q(su) satisfy RoS R, opt ≡R opu. In ad-
dition, opt is more qualified than opu since
Q(st) � Q(su).
In the example of the object movie, suppose

that new-display supports a higher level of QoS
than old-display. The versions are not only se-
mantically equivalent but also RoS-equivalent
if old-display satisfies the application’s require-
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Fig. 8 Internet karaoke object.

ment.
[Definition] A state st is semantically RoS-
equivalent with a state su on RoS R (st

∼=R su)
in an object o iff super(opt(s)) ≡ super(opu(s))
and Q(opt(s)) ∩ Q(opu(s)) � R for every state
s of o. ✷

[Definition] A method opt is semantically RoS-
equivalent with opu of an object o on RoS
R (opt

∼=R opu) iff opt(s) ∼=R opu(s) for every
state s of o. ✷

In Fig. 7, st = opt(s) and su = opu(s). s′t (=
super(st))≡ s′u (= super(su)). Q(st) andQ(su)
satisfy RoS R while Q(st) may not be the same
as Q(su). Here, opt

∼=R opu since st ∼=R su. It
is straightforward for the following property to
hold:
[Proposition] A method opt is semantically
RoS-equivalent with opu on RoS R in an ob-
ject o if opt ≡R opu. ✷

The Internet karaoke object K supports two
types of methods, sound3 and sound4 (Fig. 8).
sound3 plays monaural sound obtained from
music and displays words without background.
sound4 plays stereo sound while displaying
words with the background object bg2. Here,
let s3 and s4 be states obtained by performing
sound3 and sound4, respectively. The QoS ob-
tained by performing sound3 is different from
sound4 from an application point of view. That
is, sound4 is not semantically equivalent with
sound3 (sound4 �≡ sound3 ) even if super(s4) ≡
super(s3). Suppose a requirement QoS (RoS) R

s2

st

su

s

opt

opt

opu

opu

Fig. 9 QoS-compatible methods.

shows that the application does not care what-
ever the background is and how qualified the
music is. The states obtained by performing
sound3 and sound4 satisfy the application’s re-
quirement R. That is, sound3 ∼=R sound4.

3.2 Compatibility
We discuss in which order a pair of methods

opt and opu supported by an object o can be
performed in order to keep the object o consis-
tent. In the traditional theory 1),8), opt conflicts
with opu iff the result obtained by performing
opu and opt depends on the computation order.
For example, write conflicts with read.
Suppose a multimedia object M displays

MPEG-4 data composed of two objects show-
ing a colored background and a car. A method
add inserts an object car into the object M .
A method grayscale changes a color video to
a black-and-white gradation video. Suppose
grayscale is performed on M after add. The
MPEG-4 data obtained by performing add and
grayscale is a black-and-white gradation video
with the background and the car. However, the
data obtained by performing add after grayscale
is different from that obtained by performing
the methods in the reverse order.
[Definition] A QoS method opt is QoS-
compatible with a QoS method opu in an ob-
ject o iff s ≈ opu(s) ≈ opt(s) ≈ opt ◦ opu(s) ≈
opu ◦ opt(s) and opt ◦ opu(s) = opu ◦ opt(s) for
every state s of o (Fig. 9). ✷

If opt is not QoS-compatible with opu, opt it
QoS-conflicts with opu. In the MPEG-4 exam-
ple, add QoS-conflicts with grayscale.
Suppose MPEG-4 data is displayed from the

multimedia object M , whose QoS is 〈30 [fps],
256 [colors]〉. The method mediascale of the ob-
ject M reduces the frame rate to half of the
original one. The method reduce decreases the
number of colors to 16. The application can
obtain the same QoS by performing mediascale
and reduce in any order. In any case, the ap-
plication can get the MPEG-4 data with 15 fps
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Fig. 10 Semantically compatible methods.
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Fig. 11 RoS-compatible methods.

and 16 colors.
[Definition] A method opt is semantically com-
patible with opu in an object o iff opt ◦opu(s) ≡
opu ◦ opt(s) for every state s of o. ✷

opt semantically conflicts with opu unless opt is
semantically compatible with opu. In Fig. 10,
s1 = opt ◦ opu(s) and s2 = opu ◦ opt(s). s1 ≡ s2
if the super states of s1 and s2 are equivalent
in the application. Here, opt is semantically
compatible with opu.
[Proposition] A method opt is semantically
compatible with opu in an object o if opt is QoS-
compatible with opu. ✷

[Definition] A method opt is RoS-compatible
with opu on RoS R in an object o iff opt◦opu(s)
is RoS-equivalent with opu ◦ opt(s) on R(opt ◦
opu(s) ≡R opu ◦ opt(s)) for every state s of o.

✷

In Fig. 11, a state s4 is state-equivalent with
s2 (s4 ≈ s2) because super(s2) = super(s4).
Q(s2) �= Q(s4) but Q(s2) and Q(s4) satisfy
RoS R. Here, s2 is RoS-equivalent with s4 on
R (s2 ≡R s4).
Unless a method opt is RoS-compatible with

opu, opt RoS-conflicts with opu. In the mul-
timedia object M , the methods reduce and
mediascale are RoS-compatible but add RoS-
conflicts with grayscale.
Suppose an application is not interested in

how colorful movies are. A method update
changes an object movie from a color version
to a monochrome one. The application displays
the color movie m, i.e., [display(m)]. If update
is performed on the state m, the monochrome

s

su

st

s1
s2opt

opu

opt

opu

s′1 s′2

R s1 ∼=R s2

Fig. 12 Semantically RoS-compatible methods.

version of m is seen. Since the application
is not interested in the color of the movie m,
both versions are considered to satisfy RoS
R. Hence, Q([display(m)]) ∩ Q([update ◦ dis-
play(m)]) � R and Q(display ◦ update(m)) =
Q(update ◦ display(m)). display and update
are RoS-compatible. However, they semanti-
cally conflict, because Q([update ◦ display(m)])
�= Q([display(m)]).
[Definition] A method opt is semantically RoS-
compatible with opu on R in an object o iff
opt ◦opu(s) is semantically RoS-equivalent with
(∼=R) opu◦opt(s) on R for every state s of o. ✷

In Fig. 12, s1 = opt ◦ opu(s) and s2 = opu ◦
opt(s) for a state s of an object o where s′1 (=
super(s1)) ≡ s′2 (= super(s2)). Q(s1) andQ(s2)
satisfy RoS R. Hence, s1 ≡R s2 and opt is RoS-
compatible on R with opu. Unless opt

∼=R opu,
opt semantically RoS-conflicts with opu. For
example, suppose movie is composed of sub-
objects background and car. movie supports a
pair of methods add, which inserts car into the
MPEG-4 data, and grayscale, which changes
a color video object to a black-and-while gra-
dation video. The response obtained by per-
forming add after grayscale shows black-and-
white gradation background and colored car.
However, the white-black gradation video is ob-
tained by performing the methods in the reverse
order. Suppose the application is interested in
a colored car. The response obtained by per-
forming add after grayscale satisfies the appli-
cations’ requirement R. However, the response
obtained by performing the methods in the re-
verse order does not satisfy R. That is, add
semantically RoS-conflicts with grayscale.
[Proposition] A method opt is semantically
RoS-compatible with opu on RoS R in an ob-
ject o if opt is semantically or RoS-compatible
on R with opu. ✷

Every compatible and conflicting relation is
assumed to be symmetric in this paper.
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4. Synchronization

Multiple transactions concurrently manipu-
late a multimedia object o. According to the
synchronization theory 1), every pair of conflict-
ing methods issued by transactions have to be
serializable. That is, every pair of conflicting
methods issued by different transactions are re-
quired to be performed on every object in the
same order. For this purpose, the object o is
locked before every method opt is performed on
the object o. If the object o is already locked
for a method opu conflicting with opt, opt blocks
until the lock of opu is released. On the other
hand, every pair of compatible methods such as
read can be concurrently performed, i.e., inter-
leaved.
In this section, let us consider that “con-

flict” is one of the kinds of conflicting relations
discussed in this paper, namely semantically,
RoS-, and semantically RoS- conflicting rela-
tions. In a conflicting relation, a pair of meth-
ods opt and opu conflict in an object o iff the
result obtained by performing opt and opu de-
pends on the computation order of opt and opu.
Here, the object o is locked in order to serially
perform opt and opu; that is, one of opt and opu

is performed after the other one completes.
In the multimedia object M discussed in the

preceding sections, the method reduce is RoS-
compatible with mediascale on some RoS R.
This means that reduce and mediascale can be
performed in any order for a given RoS R. How-
ever, reduce and mediascale cannot be inter-
leaved, that is, they cannot be mutually exclu-
sive. A pair of display methods can be per-
formed in any order, since display is compatible
with itself. In addition, the methods can be in-
terleaved. The traditional concurrency control
theories 1) assume that every pair of conflicting
methods are mutually exclusive, whereas com-
patible methods can be interleaved. However,
some pairs of compatible methods cannot nec-
essarily be interleaved in the multimedia ob-
jects. Hence, we introduce two new types of
lock modes for a method opt:
1. serialization lock mode σ(opt), and
2. mutual exclusion lock mode µ(opt).
Serialization locks are used to serialize con-

flicting methods, while mutual exclusion locks
are used to make methods performed mutually
exclusively.
[Definition] For every pair of methods opt and

opu,
1. σ(opt) conflicts with σ(opu) and µ(opt)

conflicts with σ(opu) iff opt conflicts with
opu.

2. µ(opt) conflicts with µ(opu) iff opt cannot
be performed concurrently with opu. ✷

The conflicting relation is assumed to be sym-
metric. Suppose that an object o is locked for
a method opt and another method opu is issued
to the object o. If σ(opu) conflicts with σ(opt),
opt blocks until opu terminates. Suppose there
are two objects x and y, where x has methods
op1 and op2 and y has op3 and op4. A transac-
tion T1 issues op1 to x and op3 to y. Another
transaction T2 issues op2 to x and op4 to y.
First, suppose that op1 is compatible with op2
and that op3 is compatible with op4. Here, the
modes σ(op1) and σ(op3) are compatible with
σ(op2) and σ(op4), respectively. op1 and op2
can be performed on x and op3 and op4 can be
performed on y in any order. Suppose that op1
is performed on x after op2.
Next, suppose that µ(op1) conflicts with

µ(op2) and that µ(op3) is compatible with
µ(op4). The method op2 can be started after
op1 completes. op1 and op2 cannot be inter-
leaved. However, op3 and op4 can be interleaved
on y.
[Property] A mode µ(opt) conflicts with an-
other mode µ(opu) if σ(opt) conflicts with
σ(opu). ✷

If opt conflicts with opu, opt and opu cannot
be interleaved. For example, a pair of methods
reduce and mediascale conflict and cannot be
performed on the multimedia object M at the
same time.
If a transaction T issues a method opt to an

object o, o is locked according to the following
protocol:
[Locking protocol]
1. The transaction T issues a lock request
σ(opt) to the object o.

2. If the object o is locked in a mode σ(opt),
o is tried to be locked in a mode µ(opt).

3. If o is locked in the mode µ(opt), opt is
ready to be performed.

4. If o is not successfully locked in the mode
µ(opt), opt blocks.

5. If o is not successfully locked in the mode
σ(opt), opt blocks. ✷

By the locking protocol, multiple compatible
methods can be performed in the interleaved
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Fig. 13 Conflicting relations.
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s2 opt
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Fig. 14 Semantically compensating method.

manner.
Figure 13 shows that relations of four kinds

of conflicting relations among methods. Here,
QoS shows a set of possible QoS-conflicting re-
lations. RoS, Sem, and Sem-RoS indicate sets
of RoS-, semantically, and semantically RoS-
conflicting relations, respectively. State shows
a state-based conflicting relation. For example,
a method opt QoS-conflicts with opu if opt se-
mantically conflicts with opu.

5. Compensation

A method opu is a compensating method of
opt if opt ◦ opu(s) = s for every state s of an
object o 5),8). Let s1 be a state obtained by
performing opt on a state s of o; that is s1 =
opt(s). Here, o can be rolled back to the initial
state s from the state s1 if the compensating
method of op is performed on s1. For example,
append is a compensating method of delete.
[Definition] A method opu semantically com-
pensates opt in an object o iff opt ◦ opu(s) ≡ s
for every state s of o (Fig. 14). ✷

RoS-compensating methods are defined as
follows on the basic of the RoS-equivalent re-
lations.
[Definition] A method opu RoS-compensates
opt on RoS R in an object o iff opt◦opu(s) ≡R s
for every state s of o and R. ✷

In Fig. 15, it is noted that s2 is state-equivalent
with s (s2 ≈ s); that is, s and s2 have the same
super state s′. However, s and s2 satisfy RoS

s

s2

s1

s′

opt

opu

R

Fig. 15 RoS-compensating method.

s

s2

s1

opt

opu

Rs ∼=R s2

Fig. 16 Semantically RoS-compensating method.

A B

C

A′′ B′′ AB

merge

divide2

s1

s3

s2

colored

monochromatic

Fig. 17 Example of semantically RoS-compensating
method.

R.
[Definition] A method opu semantically RoS-
compensates a method opt on RoS R in an ob-
ject o iff opt ◦ opu(s) ≡R s for every state s of
o. ✷

Figure 16 shows that opu is a semantically
RoS-compensating method of opt on RoS R. A
state s2 (= opt ◦ opu(s)) is semantically RoS-
equivalent on R with a state s of an object
o (s ∼=R s2).
Suppose that, in addition to the methods

merge and delete, the multimedia object ME
supports a method divide2 that divides the
movie C into three subobjects A′′, B′′, and AB
(Fig. 17). A state s1 of ME is composed of
two subobjects A and B. A′′ and B′′ show the
content parts of A and B, respectively, which
are monochrome in state s3. AB includes the
advertisement objects A and B. Let s3 de-
note a state where the objects A′′, B′′, and AB
are obtained from A and B existing at state
s1. s1 �= s3. Furthermore, Q(s3) �= Q(s1)
because A and B are color but A′′ and B′′
are monochrome. That is, Q(s1) � Q(s2).
Suppose an application would like to see the
monochrome object. This is RoS R. Here,
Q(s3) � R. Hence, divide2 is a semantically



320 Transactions of Information Processing Society of Japan Feb. 2000

RoS-compensating method of merge on R. By
performing divide2, ME can be restored from
s2 to s3 instead of s1.
[Proposition] A method opu semantically
RoS-compensates a method opt on RoS R in
an object o if opu is a semantically compensat-
ing or RoS-compensating method of opt on R.

✷

6. Concluding Remarks

We have discussed novel relations among
methods on the basis of the QoS and state, that
is, semantically, RoS-, and semantically RoS-
equivalent and conflicting relations in object-
based systems. We presented a locking proto-
col to realize QoS-conflicting relations, which
introduces new lock modes, serialization, and
mutually exclusive modes. By using serializa-
tion and mutually exclusive locks, we can in-
crease the performance of a system.
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