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Rate control of continuous media (CM) UDP flows over the Internet should retain TCP-
friendliness. Despite many efforts to create TCP-friendly algorithms, it is often difficult
to adjust parameters pertaining to the algorithms in order to achieve exact fairness with
TCP flows. In this paper, we propose a scheme called TCP-Rate-Probing-Based Adaptation
(TPBA). In TPBA, a CM flow intermittently changes its transport protocol to TCP to mea-
sure a TCP-exact rate, and uses the rate with UDP. We have built an experimental system
with FreeBSD PCs and shown that TCP-friendly rate control can easily be achieved for both
a shorter and a longer round-trip-time connections.

1. Introduction

With the growing need to carry continuous
media (CM) and other traffic that requires high
priority over the Internet, many efforts are be-
ing made to provide guaranteed 19) or differen-
tiated service 2). Although these are important,
there are still many cases in which CM need to
be transmitted on over a best-effort basis. In
order to manage best-effort flows, several traffic
management schemes for routers, such as Class-
Based Queuing (CBQ) 7), Weighted Fair Queu-
ing (WFQ) 6), and their enhanced versions have
been implemented to ensure sharing of a limited
amount of bandwidth. TCP senders’ conges-
tion control responds to the control excersized
by these schemes whether or not the network is
congested.
CM flows mostly use RTP 18)/UDP instead

of TCP. UDP flows do not automatically con-
trol their rates to ensure fairness in the net-
work, which may make both the network
and themselves inefficient. To overcome such
a problem, TCP-friendly rate control algo-
rithms 15),17),20),23) have been introduced.
Although these algorithms perform additive

increase/multiplicative decrease rate control
like TCP, our observation is that TCP flows
are so quick in reducing the rate that they are
deprived of bandwidth by the reduction. We
believe that attaining fairness between UDP
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and TCP flows merely by means of the UDP
sender’s control with Receiver Reports (RRs)
of RTCP, which is a control protocol for RTP,
has difficulty in adjusting parameters pertain-
ing to the control.
To overcome the above problem, we mea-

sure the TCP-exact rate that a UDP flow
can utilize by replacing UDP by TCP at a
certain point during the lifetime of the flow.
We call such a period when TCP is used a
“rate-probing period.” Rate-probing periods
are inserted repeatedly to facilitate adapta-
tion to the available rate. This scheme is re-
ferred to as TCP-Rate-Probing-Based Adap-
tation (TPBA). Since rate probing requires
the flow to switch transport protocols, there
are concerns about degradation of the delay
performance and possible corruption of Appli-
cation Data Units (ADUs) 5) at the switch-
ing boundaries. We investigate the degrada-
tion through experiments both for shorter (ap-
proximately 12ms) and longer (approximately
160ms) round-trip-time connections. Although
the TCP-exact rate is obtained with TPBA,
there are still tunable parameters. Therefore,
we also discuss the sensitivity to these parame-
ters.
In this paper, we describe TPBA and show

evaluation results obtained with our experimen-
tal system. After outlining related work in Sec-
tion 2, in Section 3 we describe the difficulty of
mixing UDP and TCP in our experimental sys-
tem. In Sections 4 and 5, we detail TPBA and
socket APIs for TPBA, respectively. In Sec-
tion 6, we give the evaluation results, and in
Sections 7 and 8, respectively, we discuss the
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resuls further and outline our plans for future
work.

2. Related Work

Rate probing is not a new topic, and vari-
ous mechanisms have been proposed. Packet
Pair 3),10) is a technique for measuring a bot-
tleneck bandwidth with little disturbance to
the network. Variants of the Packet Pair algo-
rithms are Sender Based Packet Pair, Receiver
Based Packet Pair, Packet Bunch Mode 16), and
Receiver Only Packet Pair 11). Although they
are able to measure bandwidth, a long mea-
surement duration is necessary to obtain sta-
tistically stable values, they cannot be used to
compute a TCP-equivalent rate. Our work dif-
fers from other schemes that use rate probing
in that it probes for a TCP-exact rate.
Several TCP-friendly rate control algorithms

have been proposed, all of them based on
the reported macroscopic TCP characteriza-
tion 12),13). According to the characterization,
the steady state throughput of a TCP connec-
tion in the absence of timeouts, th is given as
follows:

th = C ∗ MTU
rtt ∗ √p

,

where C, rtt, and p are a constant value rang-
ing from 0.9 to 1.5, the round-trip time (RTT),
and the expected number of reduction events
per packet sent. Since the formula deviates
from the actual performance when p becomes
higher, and retransmission timeouts were not
taken into consideration, an improved model
was introduced 15).
LDA 20) proposes a scheme based on RTCP

reports with loss ratio and RTT. It also uses
Packet Pair to estimate the bottleneck link
bandwidth. Although it provides additive
increase/multiplicative decrease control, there
are many tunable parameters. Our scheme also
has tunable parameters, but these parameters
affect the TCP-friendliness less than those of
LDA. We compare our scheme with LDA in Sec-
tion 6. Rate Adaptation Protocol (RAP) 17) is
a fine-grained additive increase/multiplicative
decrease control on the order of magnitude of
the RTT. Its authors claim that RAP has been
proven to provide TCP-friendliness by simula-
tion study, but this has not been verified by
real implementation. Other studies such as
Turlettie, et al. 22) and Vicisano, et al. 23) are
multicast-oriented. A variety of similar schemes
have been proposed and are listed at a Web

site 21).
Recently Balakrishnan, et al. 1) have pro-

posed Congestion Manager. This is an en-
tity included in an end host to maintain in-
formation about the rate and congestion. A
pair of Congestion Managers exchange prob-
ing packets that are controlled under their own
acknowledgment-based protocol. The advan-
tage of this approach is that concurrent flows
that share the same path can utilize the same
information about congestion control. TCP
and/or UDP flows notify the Congestion Man-
ager of information about congestion control,
such as the RTT measured in TCP flows. The
Congestion Manager uses the information as
hints for congestion control, and measures the
available rate. It is therefore more efficient in
congestion control than our scheme if the num-
ber of concurrent flows is large. Despite this
advantage, our scheme is more precise in mea-
suring a TCP-exact rate. First, it uses TCP to
measure the TCP-exact rate, while the conges-
tion manager probes for a rate with its own pro-
tocol. In general, the rate can be obtained with
any probing protocol, but there is no guarantee
that the rate measured by the probing protocol
is the TCP-exact rate unless it behaves in the
same way as TCP. Since the probing protocol
of the Congestion Manager includes a window-
based acknowledgment mechanism, it is consid-
ered to provide a more accurate TCP-like rate
than Packet-Pair-based probing. However, the
mechanism is not identical to TCP, and it is
unknown how close the measured rate is to the
TCP-exact rate. Second, out-of-band probing
is not performed in our scheme. The Conges-
tion Manager produces an extra bandwidth of
probing. When the flows traverse a narrow link,
out-of-band probing may come with a cost. In
our scheme, a RTP/UDP flow replaces its trans-
port protocol with TCP to measure the avail-
able rate with data on the flow, which avoids
producing unnecessary bandwidth.

3. Observation of Intermingled UDP
and TCP Flows

TCP-friendly algorithms described in previ-
ous studies to some extent rely on the indication
of packet loss; the sending rate is increased until
packet loss is reported by the receiver. We ex-
amine the validity of dependence on the packet
loss through an experiment. Figure 1 depicts
the configuration of our experimental system.
Router 1 is a personal computer with FreeBSD.
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Fig. 1 Experimental system.

An Asynchronous Transfer Mode (ATM) driver
code for Efficient Networks’ ATM cards is in-
stalled on Router 1 and Host 3. Measurement
was carried out on the incoming ATM link of
Host 3 by obtaining the value of the Pentium
counter when an interrupt of an AAL5-frame
reception occurs. The ATM network consists
of one ATM switch and the round-trip time be-
tween Host 1 and 3 is less than 2ms.
Hosts 1 and 2 send an RTP/UDP flow and

two TCP flows, respectively. Let us define these
flows as follows:
• Flow 1: One TCP flow from Host 2 to 3.
• Flow 2: Another TCP flow from Host 2 to
3.

• Flow 3: An RTP/UDP flow from Host 1 to
3. Host 1 and 3 exchange RTCP messages.

All traffic is aggregated into one Virtual Chan-
nel (VC) over ATM and shaped into 1.2Mbps
at the ingress of the VC. The size of RTP pay-
load of Flow 3 is 512 bytes. At time 0, Flows 1
and 2 are initiated. At time 1 s, Flow 3 starts.
As the rate control algorithm, we use LDA 20)

in this experiment. The parameters and sym-
bols used in LDA are listed in Table 1.
In LDA, the RTT as well as the loss ratio

is measured and consequently rate control ac-
cording to the formula of the TCP-equivalent
rate can be applied. In addition, the bottle-
neck bandwidth is reported by using the Packet
Pair technique and a maximum value of the
rate is suggested. At each adaptation point,
when there is no loss, the rate is increased
by AIR. But AIR is limited by the rate at
which TCP would increase until the next adap-
tation point, as shown in line (C) of Fig. 2.
In contrast, when a loss is reported, the rate
is multiplicatively decreased. Figure 2 shows
the pseudo-code for the fundamental algorithm
of LDA. Although the original LDA accommo-

Table 1 Parameters and symbols of LDA
(*: configurable parameters).

Tadapt(*) interval between two adaptation points
Trtcp (*) interval between two RTCP reports

r sending rate
r0(*) initial value of r

rmin(*) minimum value of r
AIR additive increase rate

AIR0(*) initial value of AIR
Rf (*) reduction factor

b bottleneck bandwidth
ploss indicated loss ratio

Initialization:
r = r0;
AIR = AIR0;

At each adaptation point:
if (ploss == 0) {

if (r < b) { ...............................................(A)
AIR = AIR × (1− r

b
);........................(B)

AIR = min(AIR,
packet size

2τ
(

Tadapt

τ
+ 1));

....................(C)
r = r + AIR;

} ............................................................(A)
if (r >= b) r = b; ....................................(A)

}
else { /* ploss > 0 */

AIR = AIR0;
r = r × (1− plossRf );
if (r < rmin) r = rmin;

}

Fig. 2 Algorithm of LDA (for unicast).

dates multiple receivers, Figure 2 is confined to
a single-receiver case, since we are investigating
TCP-friendliness for unicast communications.
Although lines (A) in the figure are not pre-
sented in Ref. 20), we added lines (A) because
there are cases in which the bottleneck band-
width can decrease without a report of packet
loss. Without lines (A), the value of AIR can
become minus.
We set the parameters for LDA as follows:

AIR0 = 10kbps, Rf = 3.0, Tadapt = 3 s, and
Trtcp = 1 s. Let us initiate Flow 3 at 600 kbps,
which is intentionally a higher value than a fair
shared rate (= 400 kbps). The measured rates
of Flows 1 to 3 are shown in Fig. 3. Although
the difference in rates between a UDP and two
TCP flows remains, RTCP RR reports no loss.
Hence the difference is not reduced but becomes
slightly larger at the adaptation points. This
is mainly due to the granularity of rate con-
trol. TCP is window-based, and a single packet
loss immediately triggers fast retransmit or re-
transmission timeouts. Many rate control algo-
rithms for RTP/UDP flows rely on information
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Table 2 Parameters and symbols of TPBA (*: configurable parameters).

Trunning(*) Length of the running period
TTCP (*) Interval between monitoring actions during the rate-probing

period (1 s)
ε(*) Threshold value to determine the end of the rate-probing

period (30 kbps)
Trtcp(*) Interval between RTCP reports during the running period
Rf (*) Reduction factor (3.0)

tmaxseg Maximum segment size of TCP
ploss Indicated loss ratio
r[i] Calculated rate in the i-th cycle of the rate-probing

or running period.
cwndnew Value of the congestion window when the running period starts
cwndold Value of the congestion window when the running period ends

Fig. 3 Measured rates with LDA.

on packet loss. Therefore even when the rate
control is executed, there is no decision to de-
crease the rate until the rate for the UDP flow
becomes so high that some packets are lost. It
should be noted that even at the adaptation
point, without a report of loss, the rate is not
reduced sufficiently to be fair with TCP, since
the reported bandwidth is not always the TCP-
equivalent rate.
We further investigate the behavior of LDA

in Section 6, but it is important to note the dif-
ficulty of increasing the rate without interfering
with TCP.

4. TCP-Rate Probing Based Adapta-
tion

In accordance with our previous observation,
we propose TPBA. In TPBA, like other CM
applications, a CM flow uses RTP/UDP. How-
ever, it repeatedly switches its transport pro-
tocol to TCP in order to measure the exact
TCP-equivalent rate. Thus, the rate-probing
period and the running period appear alter-
nately, as shown in Fig. 4. The parameters and
symbols used in TPBA are listed in Table 2.
Figure 5 illustrates the TPBA sender’s behav-
ior. The TPBA sender starts transmission with
the rate-probing period; data are transmitted

Fig. 4 Rate probing periods appear repeatedly.

Fig. 5 TPBA sender’s behavior.

over TCP. During the rate-probing period, only
the usual flow data are transmitted and no data
for probing is used. Conseqently, the action of
probing does not generate extra bandwidth that
is irrelevant to data transmission. For every cy-
cle of Ttcp, the sender monitors the transmission
rate r, which is calculated from the movement
of the TCP sender’s unacknowledged sequence
number snd una. The monitored rate is stored
as r[i], where i is the number of cycles since
the rate probing period started. The TPBA
sender moves to the running period if the fol-
lowing conditions are satisfied:

|r[i − 2]− r[i]| < ε,
and
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|r[i − 1]− r[i]| < ε.
Before the transition to the running period,

r[i] is stored as rs. Once the TPBA sender
moves to the running period, it transmits data
at the rate rs. The rate control scheme in the
running period is similar to that of LDA. At
each adaptation point, the status provided by
RTCP RR messages is examined. If packet loss
is reported, the rate is reduced:

r[i] = r[i − 1]× (1− plossRf ),
where i is the number of adaptation cycles.
However, unlike LDA, the TPBA sender does
not increase its rate in the running period. If
short-term heavy congestion occurred during
the running period for some reason, the rate
could be raised in the following rate-probing
period. When a time Trunning has passed since
the beginning of the running period, the TPBA
sender moves to the rate-probing period.
When a TPBA-capable flow is created, both

UDP and TCP sockets are created. The TCP
connection may be idle during the running pe-
riod although it remains active. In the current
TCP implementation, the sender’s congestion
window size, cwnd, is reduced to the minimum
level when the sender detects that the TCP
connection is idle. To avoid a slow start, we
have disabled this reset of cwnd for the TPBA-
capable flow. Instead, cwnd is set to the fol-
lowing value, cwndnew when the rate-probing
period starts:

cwndnew = max(�cwndoldrf/(tmaxsegrs)�, 1)
× tmaxseg,

where cwndold, rf , and tmaxseg are the value
of cwnd when the running period began, the
rate of UDP when the running period lasts,
and the maximum segment size of the TCP con-
nection. Note that rf does not become higher
than rs. Thus TPBA provides UDP and TCP
with shared information about the rate at the
boundary of both periods.
To discuss rate control, three issues must

be addressed 9): the decision function, the in-
crease/decrease algorithm, and the decision fre-
quency. TPBA’s handling of these issues may
be summarized as follows.
• Decision function: If no congestion is de-
tected during the running period, do not
change the transmission rate. If congestion
is detected at the adaptation point in the
running period, decrease the transmission
rate. During rate-probing period, comply
with the TCP algorithm.

• Decrease algorithm: During the running
period, the transmission rate is decreased
in accordance with LDA. During the prob-
ing period, the transmission rate is de-
creased in accordance with the algorithm of
TCP. In both periods, therefore, the rate is
decreased multiplicatively.

• Decision frequency: The transmission rate
is never increased, but can be reduced dur-
ing the running period. Therefore, even
when the interval between rate probing ac-
tions becomes longer, disturbances to other
TCP and TCP-compliant flows are mini-
mized. In this sense, the frequency does not
strongly affect the network performance.

As a metric for evaluating fairness, we use the
following f 4),8) for rates bi of flow i (i = 1 . . .n):

f ≡ (
∑n

i=1 bi)2

n ∗ (∑n
i=1 b2

i )
,

where f is 1 when bi’s are exactly the same.
Timing of Switching Periods
When the flow switches from the rate-probing

period to the running period and vice versa,
there will be a sudden change in the delay, and
ADUs can be corrupted. To prevent ADU cor-
ruption, the switching is delayed until an ADU
boundary is detected at the sender. Socket API
is enhanced to indicate the ADU boundary, as
described in the next section. The change in de-
lay is minimized by tuning cwnd as previously
mentioned, but it should be evaluated through
experiments. Let jA denote the inter-arrival
time of ADUs at the receiver. We use jA for
evaluation; our scheme should not incur a large
difference in jA at the switching point.
When a flow moves from the probing period

to the running period, we need to ensure that
the data stored in the socket buffer of TCP
is evacuated. To enable such evacuation, the
TCP NODELAY option is set before the last
data is written into the socket buffer. The
TCP NODELAY option is disabled when the
flow enters the probing period again.

Sensitivity to Parameters
Since there are several parameters in TPBA,

we discuss how they affect the behavior of
TPBA.
• TTCP : Calculation of a rate requires some
averaging period. In particular, window-
based protocol TCP generates bursty traf-
fic, and a shorter period than the dynamics
of the congestion window is meaningless.
On the assumption that we use a network
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with an average RTT less than 200ms, we
set TTCP to 1 s, a value several times larger
than the average. For a lower-delay net-
work, it is possible to shorten the rate-
probing period by using a smaller value
of TTCP . In contrast, for a larger-delay
network such as a satellite network, TTCP

should be larger. Although we are using
a static value for TTCP at the moment,
we think that manual configuration of this
parameter can be eliminated by examin-
ing the statistics of RTT. This topic is dis-
cussed further in Section 7.

• ε: The value of ε determines the allow-
able difference in rate. Although we chose
30 kbps, this value may be too strict or
too loose when the average rate goes above
10Mbps or below 100 kbps. An alternative
criterion to determine the end of the rate-
probing period is based on the proportional
fluctuation of r[i]. This topic is discussed
further in Section 7.

• Trunning: While it is desirable to set
Trunning to 0 from the viewpoint of TCP-
exactness alone, CM applications need to
run in the running period as long as they
can in order to minimize the jitter in data
delivery. We should therefore ask ourselves
how much we can increase Trunning and
what effect a longer value of Trunning has.
During the running period, the rate may
be reduced but cannot be raised. There-
fore, if packet loss takes place frequently
with a large value of Trunning, the rate may
remain unnecessarily small and cannot be
updated to a fair rate. Although the pos-
sibility of heavy packet loss is small in the
running period, since additive increase is
disabled, running at an unnecessarily small
rate should be avoided. One solution to
this situation is to transit immediately to
the rate-probing probing period after suc-
cessive large reductions in rate.

• Tadapt and Rf : These parameters are the
same as those of LDA. Unlike LDA, TPBA
does not use the information contained in
RTCP RR to increase the rate. Therefore,
TPBA is less sensitive to Tadapt. Further-
more, a flow in the running period of TPBA
does not encounter packet loss caused by
overshooting of its rate. Therefore, the
value of Rf is less sensitive to the stabil-
ity of behavior in TPBA. We use 3.0 for
Rf , which is a suggested value in Ref. 20).

5. Fsocket

In this section, we describe our implementa-
tion of TPBA over FreeBSD and the application
programming interface.

5.1 Flow Pair
To facilitate smooth transition between two

protocols, flows with both UDP and TCP are
created. Only one flow is used for data trans-
mission and the other is used as a backup. More
specifically, the TCP flow is used in the rate-
probing period, and data is carried over the
UDP flow in the running period. The pair of
these flows is referred to as a flow pair. Besides
the flow pair, another UDP flow is created for
exchanging RTCP messages.

5.2 Application Programming Inter-
face

We design a socket interface that keeps users
unaware of the underlying transport protocols.
For that purpose, an interface of a flow pair
socket, fsocket, is defined. In the socket inter-
face of BSD UNIX, streams and datagrams use
different parameters or even system calls for
communication. Examples of such differences
are accept(), connect(), send(), and sendto().
The fsocket interface conceals the difference and
provides a set of unified system calls listed in
Fig. 6. Since TPBA communications are lim-
ited to remote ones with the AF INET domain,
parameters for specifying the domain are omit-
ted. f socket() returns a descriptor of fsocket,
fsock fd. The descriptor is used throughout the
lifetime of communication. f dst() is a func-
tion for registering a remote site. A parameter,
adu ind, in f send specifies the boundary of an
ADU.
In addition to the fsocket interface, an fsocket

library that performs TPBA operations is in-
troduced. All functions of TPBA described in
the previous section are confined in this library.
Figure 7 illustrates a flow pair, fsocket inter-
face, and fsocket library. To enable receiving
both TCP and UDP data in the receiver, se-
lect() is used inside the fsocket library.

int f_socket(struct sockaddr_in *local_addr);
int f_dst(int fsock_fd, struct sockaddr_in

*remote_addr);
int f_close(int fsock_fd);
int f_send(int fsock_fd, caddr_t msg, size_t len,

int flags, int adu_ind);
int f_recv(int fsock_fd, caddr_t msg, size_t len,

int flags);

Fig. 6 Fsocket API.
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Fig. 7 Flow pair.

A slight modification to the kernel is required
to monitor the TCP transmission rate at the
sender, but there is no need to change the kernel
at the receiver.

6. Experiment

In this section, we first examine the behav-
ior of TPBA over an isolated testbed network
and over the public Internet, and then compare
TPBA with other TCP-friendly schemes over
the testbed network. We also examine the sen-
sitivity of parameters pertaining to TPBA.

6.1 Examining the Behavior of TPBA
We used the same hosts and router as shown

in Fig. 1. TPBA is implemented on Hosts 1 and
3 with FreeBSD 2.2.6R. We used two types of
networks. In Topology 1, a loop-back VC over
ATM from Keio University to NTT Yokosuka
is used as shown in Fig. 8. There is no router
along the VC, and the ATM interfaces of Router
1 and Host 3 belong to the same IP subnet. All
traffic generated at Hosts 1 and 2 is aggregated
into one VC at the ATM output link of Router
1 and shaped into 1.2Mbps. In Topology 2,
we used an Internet path from Keio University
(Japan) to Carnegie Mellon University (U.S.A.)
shown in Fig. 9. In Topology 2, measurements
are done at the receiver socket instead of the
driver level. We chose these topologies in order
to test our scheme in both traffic-controlled and
public networks.
The conditions of flows are the same as those

described in Section 3, but Flow 2 was modified
such that Flow 2 starts at time 10 s and ends
at time 25 s. In addition, we used two types of
ADUs.
• ADU1: one ADU consists of one 64-byte

Fig. 8 Topology 1.

Fig. 9 Topology 2.

payload.
• ADU2: one ADU consists of ten 512-byte
payload.

As TPBA parameters, Trunning, Tadapt, and
Trtcp were set to 10 s, 3 s, and 1 s, respectively.
First we used ADU2 to observe the transi-

tion of rates in Topology 1. The measured
round-trip time between Host 1 and 3 was
around 12ms. Snapshots of the measured rates
of Flows 1 to 3 and fairness f are shown in
Figs. 10 and 11. When Flow 2 starts at 10 s,
Fairness f is dropped to 0.7 because of TCP’s
slow start of Flow 2. Although Flow 2 increases
its rate, Flow 3 does not decrease its rate, be-
cause there is no packet loss. As a result, the
rate of Flow 1 is decreased. After Flow 3 en-
ters the rate-probing period at time 13.8 s, the
rate of Flow 3 is adjusted to a fair shared value
that can be used during the following running
period. Thus fairness is recovered to a value
near 1. After Flow 2 has ended, the difference
between the rates of Flow 1 and 3 is corrected
during the following rate-probing period. It has
been shown that rate increase is possible with
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Fig. 10 Measured rates for ADU2 (Topology 1).

Fig. 11 Measured fairness f for ADU2 (Topology 1).

the rate-probing.
Let us observe the transition of the inter-

arrival time of ADUs, jA. Figure 12 is a
snapshot of jA of Flow 3. Since there is no
packet loss at the switching points of periods,
we can observe no significant jump in jA. It
is also noted that fluctuation of jA is larger in
the rate-probing period than in the running pe-
riod. From this figure, it is suggested that UDP
is preferable if the rate is controlled in a TCP-
friendly manner and there is no packet loss.
Similar experiments were conducted in

Topology 2. The path in Topology 2 has a
longer round-trip time around 160ms. The
result of executing the traceroute program is
shown in Fig. 13. Measurements were made at
the user level of Host 3 with Topology 2, be-
cause we could not use a special-purpose ATM
card. The results in Topology 2 are shown in
Figs. 14 to 16. Unlike in the experiment with
Topology 1, Flows 1 to 3 traverse the Internet
and thus the activeness of Flow 2 does not in-
fluence the rates of Flows 1 and 3. From some
reason during time 4 s to 6 s, the rate of TCP-
controlled Flow 1 falls to 0, which results in
a drop in f . Similar curvev of f and jA are
observed in Figs. 15 and 16. However, there is
one significant difference: a large jA at time
27 s. This is caused by packet loss when UDP
is used. The loss cuases a decrease in the rate

Fig. 12 Measured inter-arrival time of ADUs for
ADU2 (Topology 1).

133.27.186.177 ............................................ Host 1
1 yamabiko (133.27.186.1) 0.580ms 0.454ms 0.423ms
2 gw11-v3.sfc.keio.ac.jp 1.082ms 1.018ms 1.014ms
3 fw2-f.sfc.keio.ac.jp 0.962ms 0.911ms 0.858ms
4 fw1.sfc.keio.ac.jp 1.072ms 1.074ms 1.003ms
5 wide-keio-p2p.sfc.keio.ac.jp 1.205ms 1.136ms 1.192ms
6 cisco12.fujisawa.wide.ad.jp 2.162ms 2.118ms 2.139ms
7 cisco2.otemachi.wide.ad.jp 6.795ms 6.989ms 6.809ms
8 cisco5.otemachi.wide.ad.jp 6.863ms 7.974ms 6.931ms
9 tpr-loopback0.jp.apan.net 11.486ms 9.367ms 7.850ms
10 203.181.248.241 145.166 ms 145.634ms 145.175ms
11 203.181.248.238 146.154 ms 147.948ms 146.968ms
12 cs-atm0-0-11.psc.vbns.net 156.471ms 158.382 ms 157.331ms
13 garcia-72.psc.edu 156.966ms 156.410ms 156.680 ms
14 140.173.6.78 158.736ms 159.248 ms 159.234ms
15 MODERN.ART.CS.CMU.EDU 158.312ms 157.744 ms 157.673ms

.... Host 3

Fig. 13 Route from Host 1 to Host 3 obtained by
traceroute.

of Flow 3, but this recovers to a stable value
in the following rate-probing period. Although
this is a phenomenon that has to be explored
in detail, it is important to note that Flow 3
automatically runs at a TCP-equivalent rate.
Experiments were also conducted for ADU1.

Snapshots of the measured rates and fairness
in Topology 2 are shown in Figs. 17 and 18.
There is no key difference between the results
for ADU1 and ADU2.
Next, we investigated the dependence on the

number of TCP connections.
Let Ntcp denote the number of simultaneous

TCP connections from Host 2 to Host 3. We
conducted ten trials of 40-s duration in both
Topologies 1 and 2. Figure 19 shows the av-
erage values of fairness for ADU1 and ADU2
after the first rate-probing period has finished.
As can be seen, TPBA has no dependence on
Ntcp.
Finally, we observed the response to a change

in the availability of bandwidth. In this exper-
iment, we used ADU2 with Flow 3 over Topol-
ogy 1 and set up two kinds of test cases:
• Case a: Flows 1 and 3 begin at time 0,
whereas Flow 2 begins at time 10 s.

• Case b: Flows 1 to 3 begin at time 0, and
Flow 2 ends at time 10 s.

Let Tpr and Tpi denote the elapsed time from
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Fig. 14 Measured rates for ADU2 (Topology 2).

Fig. 15 Measured fairness f for ADU2 (Topology 2).

Fig. 16 Measured inter-arrival time of ADUs for
ADU2 (Topology 2).

the beginning of Flow 2 until the rate of Flow 3
becomes stable in Case a, and the elapsed time
from the end of Flow 2 until the rate of Flow
3 becomes stable in Case b, respectively. Ten
trials were conducted for each case and the rates
were calculated every 400ms. The measured
results are shown in Table 3. They indicate
that Ttcp can be set to a smaller value than 1 s;
a smaller Ttcp allows an earlier switch to the
running period.

6.2 Comparison between TPBA and
LDA

We now compare our scheme with another
TCP-friendly scheme, LDA. We also tested
RAP 17) by executing a program developed by

Fig. 17 Measured rates for ADU1 (Topology 2).

Fig. 18 Measured fairness f for ADU1 (Topology 2).

Fig. 19 Number of TCP connections vs. fairness.

Table 3 Response to the change in the availability
of bandwidth.

Tpr Tpi

maximum 2.8 s 3.2 s
average 2.0 s 2.8 s

its author☆, but as stated later, it seems cur-
rently premature to compare RAP with other
schemes on an implementation basis.
To obtain statistical values through repeti-

tive experiments, we used Topology 1 instead
of Topology 2. As traffic for transmission, we
used ADU2. As in the previous experiments,
Host 1 generates two TCP flows, Flows 1 and
2, to Host 3, while Host 2 generates a UDP
flow, Flow 3, which is under the control of ei-

☆ Readers who are interested in using RAP software
can contact the author of RAP at <reza@isi.edu>.
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Table 4 Compared cases (a: Tadapt, b: Trtcp, c: Trunning , d: AIR0).

Test Case Scheme a b c d Rf

[s] [s] [s] [kbps]
TPBA-3-1-10-3 TPBA 3.0 1.0 10 - 3.0
TPBA-3-1-10-6 TPBA 3.0 1.0 10 - 6.0
TPBA-3-1-30-3 TPBA 3.0 1.0 30 - 3.0
TPBA-1-0.5-10-3 TPBA 1.0 0.5 10 - 3.0
TPBA-1-0.5-30-3 TPBA 1.0 0.5 30 - 3.0
LDAF-3-1-10-3 LDAF 3.0 1.0 - 10 3.0
LDAF-3-1-10-6 LDAF 3.0 1.0 - 10 6.0
LDAF-3-1-100-3 LDAF 3.0 1.0 - 100 3.0
LDAF-1-0.5-10-3 LDAF 1.0 0.5 - 10 3.0
LDAF-1-0.5-100-3 LDAF 1.0 0.5 - 100 3.0
LDA-3-1-10-3 LDA 3.0 1.0 - 10 3.0
LDA-3-1-10-6 LDA 3.0 1.0 - 10 6.0
LDA-3-1-100-3 LDA 3.0 1.0 - 100 3.0
LDA-3-1-100-6 LDA 3.0 1.0 - 100 6.0
LDA-1-0.5-10-3 LDA 1.0 0.5 - 10 3.0
LDA-1-0.5-100-3 LDA 1.0 0.5 - 100 3.0

ther TPBA or LDA. In addition, Host 1 creates
another TCP flow, Flow 4, to change the traffic
load. The initial value of the rate, r0, is set to
10 kbps as suggested in the literature 20).
To examine longer-term dynamics than in the

previous experiments, we set the time sequence
of Flows 1–4 as follows:
• At time 0, Flows 1–3 start simultaneously.
• At time 200 s, Flow 4 also starts. Therefore
the four flows coexist after time 200 s.

• At time 300 s, all flows are terminated.
To observe the sensitivity of the parameters,

several cases were created for TPBA and LDA,
as listed in Table 4. In the table, LDAF stands
for “LDA with a Fixed AIR”, The intention of
testing LDAF was to investigate the mechanism
of updating the value of AIR. More specifically,
LDAF replaces line (B) in Fig. 1 with “AIR =
AIR0 × (1− r

b )”.
Prior to comparing all the cases, we collected

some snapshots of transitions in the rate so as to
determine suitable metrics for comparison. Un-
fortunately, we were confronted with the ques-
tion of how to define the “rate” itself. For ex-
ample, we cannot tell whether or not the result
of LDAF-1-0.5-10-3 in Fig. 20 provides almost
fair rates without any concrete definition of the
rate. Each plot in Fig. 20 represents an average
value over a 500-ms period. The rates of Flows
1 and 2 fluctuate almost synchronously, while
that of Flow 3 moves in the opposite way, and
we can hardly say that they are fairly shared on
the time scale of seconds. However, if we drew
the figure with a 50-s period average, the rates
of Flows 1–3 would not differ from each other
by more than 50 kbps. This kind of consider-

Fig. 20 Snapshot of the rate (LDAF-1-0.5-10-3).

Fig. 21 Rate vs. sampling period.

ation was not required in the previous experi-
ments, since long-term oscillation was not seen
in TPBA.
The difficulty of defining a rate results from

the inherent nature of packet arrival; packet ar-
rival is a discrete-time process. At one extreme,
the receiving rate is expressed in a series of
Delta functions, as shown in Fig. 21. In the
figure, ti and bi represent the time of receiving
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Fig. 22 Snapshot of the rate (TPBA-3-1-10-3: the
rate of Flow 3 is obtained by adding the rate
of Flow 3 (UDP) to that of Flow 3 (TCP)).

Fig. 23 Snapshot of the rate (TPBA-3-1-30-3).

and the data size of the received packet, respec-
tively. Let Saverage denote the sampling pe-
riod of averaging for rate calculation at the re-
ceiver. The longer Saverage is, the smoother the
rate becomes, but the more information about
the short-term change may be lost. Therefore,
we need a tradeoff to determine the value of
Saverage.
In the particular case of discussing TCP-

friendliness, if Saverage is a relatively low value
at less than 10ms, an oscillation in the rate due
to the window-based and ACK-clocked charac-
teristics of TCP appears even when the TCP
flow is stable. For this reason, we set Saverage

to 1 s, which is considered to provide a rate
that is smooth enough to suppress the window-
based burstiness and also to capture a signifi-
cant change.
Having determined the value of Saverage, we

now examine snapshots of rates for other cases.
We focus on how the parameters Trunning,
Tadapt, Rf , and AIR affect the fairness prop-
erty. Figures 22 and 23 correspond to TPBA-
3-1-10-3 and TPBA-3-1-30-3, respectively. As
can be seen in the figures, the response to
the change at time 200 s becomes worse with
a larger value of Trunning. However, the dam-
age to TCP flows, until the rate-probing is trig-

Fig. 24 Snapshot of the rate (LDAF-3-1-10-3).

Fig. 25 Snapshot of the rate (LDAF-3-1-100-3).

gered, is minimized, since the rate of Flow 3 is
not increased.
Unlike Trunning, Tadapt hardly affects the be-

havior with TPBA. The behavior with TPBA-
3-1-10-6 is almost the same as that with TPBA-
3-1-10-3. In contrast, Tadapt strongly affects the
behaviors with LDAF and LDA. In the rate-
increasing phase of LDAF, the slope of the in-
crease is inversely proportional to the value of
Tadapt. This can be recognized by comparing
Figs. 24 and 25. In LDA, the behavior dif-
fers slightly, since the value of AIR changes at
each adaptation point, but the smaller value
of Tadapt accelerates the convergence (Figs. 27
and 28). Despite this advantage, updating the
rate frequently necessitates more bandwidth for
RTCP messages and requires a trade-off.
The value of 3.0 for Rf was suggested on

the basis of extensive simulations in the liter-
ature 20). We also tested a case with a value
of 6.0. However, there was no significant dif-
ference between the two in TPBA, LDAF, and
LDA. We revisit the influence of Rf on the fair-
ness later on the basis of the calculated values
of metrics.
Finally, we discuss the selection of the value

of AIR0. Figures 24–27 show the difference of
AIR0 in LDAF and LDA. As expected, a large
value of AIR causes oscillation in the rate in
LDAF, since AIR is not iteratively reduced. In
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Fig. 26 Snapshot of the rate (LDA-3-1-10-3).

Fig. 27 Snapshot of the rate (LDA-3-1-100-3).

Fig. 28 Snapshot of the rate (LDA-1-0.5-100-3).

this sense, the idea contained in Line (B) of
Fig. 2 is important. This enables a faster rais-
ing of the rate at the beginning or after a heavy
loss, and a slowing down of the update after it-
erations. However, as can be seen in Fig. 26, a
smaller value may cause the rate to stay at an
unexpectedly low value, whereas a larger value
may result in it remaining at an overshot value
(Fig. 27). From a comparison of cases with dif-
ferent AIR0, it can be said that LDA is very
sensitive to AIR0 and that the algorithm for
updating the value of AIR requires improve-
ments.

Quantitative Comparison
We now define metrics for comparing all

the cases. Let Ri(j) denote the rate over
[Saverage × j, Saverage × (j + 1)] for flow i.
Then, let ncross and njoin represent the min-

imum value of j such that R3(j) ≥ R1(j) or
R3(j) ≥ R2(j) and the minimum value of j
such that R4(j) ≥ R1(j) or R4(j) ≥ R2(j),
respectively. In addition, let nchange and nfinal

be (200 s/Saverage−1) and (300 s/Saverage−1),
respectively. Under these definitions, we define
δRintra, δRave1, and δRave2 as follows:

δRintra

≡ max
i=1,2,3

(maxncross≤j≤nchange
Ri(j)

−minncross≤j≤nchange
Ri(j)),

SR1i =

∑nchange

j=ncross
Ri(j)

nchange − ncross + 1
,

SR2i =

∑nfinal

j=njoin
Ri(j)

nfinal − njoin + 1
,

δRave1 ≡ max
i �=j

|SR1i − SR1j |,
δRave2 ≡ max

i �=j
|SR2i − SR2j |.

Intuitively, δRintra, δRave1, and δRave2 pro-
vide the magnitude of fluctuation in a steady
state, the difference in the average rate of flows
in a steady state, and the difference in the av-
erage rate of flows after traffic change.
We conducted ten trials for each case and cal-

culated δRintra, δRave1, and δRave2. We dealt
with LDAF-3-1-10-3 and LDAF-3-1-10-6 differ-
ently in calculating δRintra and δRave1. These
two cases do not reach a repetitive cycle at time
200 s. Therefore we collected rates over 400 s
instead of 200 s to calculate the two metrics.
In addition, since LDA-3-1-10-3, LDA-3-1-10-
6, and LDA-1-0.5-10-3 do not provide ncross,
δRintra and δRave1 for them were calculated
with the minimum vaule of n that satisfies the
following condition:

∀i, jε[n− 10, n] : |R3(i)−R3(j)| < 20 kbps.
Figures 29–31 show δRintra, δRave1, and

δRave2 for all cases, respectively. Since LDAF
was tested for the purpose of reference, we fo-
cus solely on a comparison of TPBA and LDA.
In every metric, TPBA outperforms LDA. In
particular, LDA does not converge to a TCP-
friendly rate after a traffic change. We also
cannot observe a significant difference between
the cases in which Rf is 3.0 and 6.0. It can
be concluded from this comparison that TPBA
is robust in traffic change because a TPBA-
capable flow reaches a TCP-friendly rate after
the change.
Finally, we conducted the same experiment

using RAP instead of LDA. The result with
the current implementation by Rejaie, et al. 17)
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Fig. 29 Calculated δRintra.

Fig. 30 Calculated δRave1.

Fig. 31 Calculated δRave2.

is shown in Fig. 32. Although fairness is sug-
gested in the simulation 17), the result is far
from exhibiting fairness. We are currently in-
vestigating the cause of the problem. One thing
we noticed is the RAP algorithm’s strong de-
pendence on calculating the RTT. Unlike in
common implementations of TCP, the RTT is
calculated at the user level in the current im-
plementation of RAP. We are afraid that un-
predictable system calls with a large overhead
may cause inaccurate RAP behavior. In order
to make a fair comparison, we are enhancing
the implementation.

7. Discussion

Switching protocols may cause an extra over-
head in processing and possible corruption of
ADU at the boundaries of switching. Using

Fig. 32 Snapshot of the rate with RAP (We used the
author’s implementation. We plan to change
the implementation for future comparison).

TCP entirely instead of UDP may be an al-
ternative. However, the delay performance of
TCP is often poor, it is desirable to use UDP
whenever possible. As can be seen in Figs. 13
and 16, UDP is superior in terms of reducing
jitter. One drawback of our approach is that
it limits unicasting. However, a TCP-friendly
algorithm for unicasting has not yet been es-
tablished and should still be investigated.
We have not investigated any cases with

multiple concurrent RTP/UDP flows. Such a
case is complicated than that with a single
RTP/UDP flow. However, as long as each flow
uses rate-probing, the rate of each flow is ad-
justed in the rate probing period even when a
concurrent RTP/UDP flow is dynamically cre-
ated or terminated.
The algorithm of TPBA does not include crit-

ical parameters that influence long-term fair-
ness with TCP, such as AIR of LDA. However,
there is a possibility of instability caused by
misconfiguration of TTCP and ε. In one case,
when TTCP and ε are set to 1ms and 1 kbps, re-
spectively, the rate-probing period may not be
completed. In another case, when they are set
to 1ms and 10Mbps, the measured rate during
the rate-probing period is not trustworthy.
The solution to this is to embed a rate-

monitoring module inside the TCP sender. In
TCP-Reno, the most popular version of TCP,
cwnd at the sender is halved when the sender
receives three duplicate acknowledgments trig-
gered by a packet loss. After the reduction
of cwnd, the sender increases cwnd every time
it receives an acknowledgment. Although the
TCP sender behaves differently when a retrans-
mission timeout occurs under heavy congestion,
the TCP sender usually repeats this cycle of
increasing and decreasing cwnd in the steady-
state. This mechanism determines the rate of
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the TCP. Therefore, instead of a fixed value of
TTCP at the user library, the period for calcu-
lating the TCP rate can be decided by monitor-
ing the interval between the time when cwnd is
reduced. The period can vary dynamically.
Criterion for determining the end of the rate-

probing period should be also changed. It is
more natural that fairness should be evaluated
according to the proportion of difference rather
than its absolute value: a 100-kbps difference
affects 300-kbps flows much more than 10-Mbps
flows. For this reason, instead of ε, we define
an allowable difference of z% (e.g., 5%) in our
design. The embedded rate-monitoring module
can then determine whether the fluctuation of
the rate is within this range.
We intended to minimize the modification

to the kernel when we begin designing TPBA.
However, the current scheme cannot avoid mis-
configuration of TTCP and ε. Therefore, we
plan to develop an embedded rate-monitoring
module inside the kernel.

8. Future Work

We have several plans for future work. First,
we plan to use a network simulator. In the work
described here, we conducted experiments over
only two types of networks. Although the re-
sults of the experiments show that our scheme
is effective in the tested networks, we plan to in-
vestigate the performance on an ns-2 14) simula-
tor to generalize the evaluation. Second, we will
extend the comparison with other schemes. It is
still unknown whether either the software or the
algorithm of RAP has any problems. Since the
simulation described in the literature 17) shows
a good result, we currently doubt about the im-
plementation of the software and are investigat-
ing its details. Implementation-based compari-
son with the congestion manager is also within
our future scope. Finally, we will develop the
embedded rate-monitoring module described in
the previous section.

9. Concluding Remarks

In this paper, we have proposed a new mech-
anism for adapting CM flows on the basis of
TCP-rate probing. Our scheme, TPBA, fo-
cuses on the rate control of CM flows by prob-
ing for the TCP-exact rate. We have imple-
mented TPBA on FreeBSD PCs and evaluated
the effectiveness of TCP-friendliness over our
own load-controlled network and public net-
works. Experimental results have shown that

a TPBA-capable flow is adaptive to a TCP-
equivalent rate and that there is no significant
degradation in performance at the boundaries
of the running and rate-probing periods. We
have also compared TPBA with LDA exten-
sively and shown that TPBA outperforms LDA
in achieving TCP-friendliness.
In future work, we plan to compare TPBA

with other schemes, through simulation as well
as implementation, and to develop a rate-
monitoring module inside the kernel.
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