
Vol. 41 No. 2 Transactions of Information Processing Society of Japan Feb. 2000

Regular Paper

MobileSocket: Session Layer Continuous Operation Support

for Java Applications

Tadashi Okoshi,† Masahiro Mochizuki,† Yoshito Tobe††

and Hideyuki Tokuda†††,†

This paper proposes the session layer communication continuity support for Java appli-
cations toward a continuous operation for the users. In a mobile computing environment,
mobile hosts move around the different network segments even during applications commu-
nicate with the remote endpoint. In such a situation, maintenance of the communication
continuity between the applications is significant. In order to retain the communication con-
tinuity, not only the mobility support but the virtual circuit continuity support is required
for applications. Existing approaches on the network, the transport and the session layers
do not provide the complete mobility and virtual circuit continuity for applications, although
they require the complicated implementation. “MobileSocket” is a user-level enhanced socket
library written in Java, and provides the library-based session layer mobility and virtual cir-
cuit continuity support for applications. Two mechanisms, Dynamic Socket Switching (DSS)
and Application Layer Window (ALW) enforce MobileSocket and enable the implementation
simplicity. MobileSocket applications can be used in the Java mobile applications and the
agents, as well as in ordinary network applications. In this paper, after we clarify the commu-
nication continuity and existing approaches, we present the MobileSocket design, mechanism,
and evaluation results.

1. Introduction

Several types of computing entities, such as
users, hosts, applications 1), or even users’ desk-
tops 2) can “rove” around in the mobile com-
puting environment. Carrying their own note-
book computers, users rove around between the
places. Their mobile hosts are disconnected
from and reconnected to the different network
segments any number of times, even during ap-
plications such as remote log-in, video confer-
ences, etc., are active.
For instance, firstly a user uses his/her note-

book computer in the office with TELNET ap-
plication to log-in the remote host and the video
conference application with friends in other
places. Due to the schedule, he/she moves from
the office to a meeting room with the note-
book computer, disconnecting the host from the
network once, and reconnecting it to the dif-
ferent network segment in the meeting room.
Even in such a situation, this user may want to
use TELNET and video conference applications
continuously, after the host has moved to the
different network. Without any mobility sup-

† Graduate School of Media and Governance, Keio
University

†† Keio Research Institute at SFC, Keio University
††† Faculty of Environmental Information, Keio Univer-

sity

port in the host, both TELNET and video con-
ference application cannot maintain their com-
munication with the remote endpoint or behave
continuously. The user needs to reconfigure the
applications manually, reconnecting the session
to the remote endpoint or restarting the appli-
cations.
Particularly for the network applications,

maintenance of their communication conti-
nuity with the companion applications on the
remote hosts is significant, in order to enable
applications to maintain continuous behavior
and to provide the users with continuous op-
eration. Not only the mobility support often
enabled by the transparent network identifier
but the virtual circuit continuity support
which retains the byte stream consistency of the
virtual circuit sessions are the requirements for
communication continuity.
Although some related works 3)∼5) on the net-

work, transport, and session layers address ei-
ther of mobility and virtual circuit continuity
for applications, they require extra software
components such as proxies, agents, and the
modifications to the existing protocols.
In this paper, we present MobileSocket,

which is the user-level, pure Java 6)-based,
enhanced Socket interface library. It pro-
vides both mobility and virtual circuit con-
tinuity for any Java applications which use

222

Vol. 41 No. 2　　　　MobileSocket: Session Layer Continuous Operation Support for Java Applications 223

java.net.Socket class 7) as their Inter Process
Communication (IPC). By using MobileSocket,
existing Java applications can obtain communi-
cation continuity without any modifications in
their source code, while the Java-based adapta-
tion scheme for the mobility event allows appli-
cations to behave adaptively.
MobileSocket is enforced by two special

mechanisms, Dynamic Socket Switching (DSS)
and Application Layer Window (ALW). Our
library-based session layer approach allows Mo-
bileSocket to provide communication continuity
with only user-level implementation. Moreover,
serializable Java class library allows even appli-
cations with the active MobileSocket connec-
tions to be mobile.
In the remainder of this paper, we present our

definitions and clarifications of mobility, virtual
circuit continuity and communication continu-
ity in Section 2. We describe the issues for
the communication continuity realization and
several approaches of the related works in Sec-
tion 3. Section 4 shows the design overview
of MobileSocket and Section 5 describes Mo-
bileSocket mechanism. Section 6 presents the
performance evaluations of our implementation
and Section 7 discusses the results of the func-
tional comparisons with the related works. Fi-
nally, we address our future work and conclude
this paper in Section 8.

2. Continuous Operation

In this section, we describe our definition
of “mobility” and “virtual circuit continuity”
for clarification of “communication continu-
ity”, and explain two connection redirection
schemes: Explicit and Implicit Redirection.
2.1 Mobility
Figure 1 shows the definition of mobility.

With “mobility”, the mobile host can maintain
the transparent host identifier in network prot-
col architecture, even after the host has been
disconnected from a network and reconnected
to a different network. The mobile host can
be identified transparently from other hosts in
the wide area network at a certain layer of the
network structure, with any framework which
supports mobility.
Several different approaches for mobility are

possible at each layer of the layered network
structure because there are multiple different
identifiers in each layer, such as IP address,
TCP connection (a pair of an IP address and a
port number) or a socket descriptor.

� ✏
Mobility: capability of the protocol func-
tionality in the both communication end-
points to identify each other independent
of the location changes of the endpoints.

✒ ✑
Fig. 1 Definition of mobility.

� ✏
Virtual Circuit Continuity: capability
of keeping a virtual circuit connection be-
tween the applications alive retaining reli-
ability and the order of the byte stream of
the virtual circuit when the location of the
host changes.

✒ ✑
Fig. 2 Definition of virtual circuit continuity.

2.2 Virtual Circuit Continuity
Figure 2 shows the definition of virtual cir-

cuit continuity. With “continuity”, applica-
tions in the mobile host can preserve their ac-
tivities and can offer their own services to users,
after the host moves to a different network (or
even after the application moves to another
host). Particularly in the case of network com-
munication aspects, with “virtual circuit conti-
nuity”, network applications using virtual cir-
cuit connections with the remote applications
can maintain their connections and continue
communicating despite the location changes of
the host or applications themselves. Reliability
and order accuracy of each byte of data stream
(we describe both of them as “byte stream con-
sistency”) in the connection between the end-
points are maintained for the applications.
2.3 Communication Continuity
Figure 3 shows the definition of communi-

cation continuity. Communication between the
applications are mainly classified to datagram
communication such as a UDP flow and a reli-
able virtual circuit communication such as TCP
connection. Each type of communication has
different requirements for communication con-
tinuity, (1) Datagram Communication Conti-
nuity and (2) Virtual Circuit Communication
Continuity.
2.3.1 Datagram Communication Con-

tinuity
For applications which use connection-less

datagram communications, including the net-
work video conference application or the net-
phone application, the mobility support is
enough for datagram communication continu-

224 Transactions of Information Processing Society of Japan Feb. 2000

� ✏
Communication Continuity: capabil-
ity of maintaining the communication be-
tween the applications despite the location
changes of the host.

(1)Datagram Communication Continu-
ity: Communication continuity support for
applications using a datagram communication
is enabled only by the mobility support.

(2)Virtual Circuit Communication Con-

tinuity: Communication continuity support

for applications using a virtual circuit connec-

tion is enabled by both the mobility and the

virtual circuit continuity support.

✒ ✑
Fig. 3 Definition of communication continuity.

ity. Those types of applications do not need
reliability and ordered data packet in their com-
munication. The lack of those two characteris-
tics is not critical, although Quality of Service
(QoS) they provide to users may be affected.
For example, Mobile-IP provides not only mo-
bility but datagram communication continu-
ity. When the mobile host reconnects to a
foreign network after the disconnection period,
UDP/IP communication between the mobile
and the correspondent hosts can be redirected,
although the packets sent by the correspondent
host to the mobile host during the mobile host’s
disconnection are lost in the network.
2.3.2 Virtual Circuit Communication

Continuity
In contrast, mobility does not always imply

virtual circuit communication continuity in the
case of applications with virtual circuit commu-
nications. In this case, virtual circuit commu-
nication continuity can be achieved only with
both mobility and virtual circuit continuity. In
order to realize both characteristics at the same
time, it is required to support not only the
mechanism for mobility support but an addi-
tional mechanism which supports virtual cir-
cuit continuity. For instance, Mobile-IP pro-
vides IP layer mobility, but does not provide
complete virtual circuit continuity for the ap-
plications with TCP/IP connections. In this
case, the retransmission timer and the keep
alive timer of TCP protocol cause problems and
they limit the virtual circuit continuity provi-
sion of Mobile-IP.
Virtual circuit protocol typically guarantees

the byte stream consistency of the connec-

tion. TCP protocol, as an instance of virtual
circuit connection protocol, uses acknowledg-
ment packets for this functionality and exploits
the retransmission timer which retransmits the
data if the acknowledgment has not arrived
from the remote before the timer expiration.
The retransmission timeout period is fixed in
the protocol stack and cannot be modified by
applications in most of major TCP implementa-
tions 8), although RFC 1122 9) requires the abil-
ity of modification. As a result, when the cor-
respondent host sends data to the mobile host
during the mobile host’s disconnection, a TCP
connection will be torn down after twelve times
of retransmission or nine-minutes idle time.
In addition to the retransmission timer, if the

TCP keep alive timer option is enabled, the
TCP connection between the mobile and the
correspondent hosts cannot be alive for greater
than or equal to 2 hours 10 minutes. Thus, the
mobile host cannot be disconnected for over this
period.
2.4 Connection Redirection Schemes
There are two kinds of connection redirection

schemes that provide applications with virtual
circuit continuity: Implicit and Explicit Redi-
rection. Both schemes have different advan-
tages and disadvantages.
2.4.1 Implicit Redirection
Implicit Redirection is a mechanism by which

a connection is automatically redirected such
that the application of the connection is un-
aware of the relocation of the host. Thereby,
additional lines for redirection in a source code
are not required. Hence, the existing appli-
cations can obtain communication continuity
without any modification or compilation. A
drawback of Implicit Redirection is the lack of
adaptability in the behavior of the applications.
2.4.2 Explicit Redirection
Explicit Redirection is a mechanism by which

the application programmers can explicitly
specify where the redirection takes place. The
programmers need to insert additional lines to
their source code for the redirection. For in-
stance, suspend and resume are used to spec-
ify temporal disconnection of a connection and
resumption of the disconnected connection, re-
spectively. A benefit with Explicit Redirec-
tion is accommodating an adaptive behavior of
the applications with signals or events from the
underlying mechanism associated with Explicit
Redirection.

Vol. 41 No. 2　　　　MobileSocket: Session Layer Continuous Operation Support for Java Applications 225

3. Issues and Related Approaches

In this section, we describe issues for commu-
nication continuity and classify several related
works.
3.1 Issues
We define four issues for the achievement of

communication continuity support for applica-
tions toward the continuous operation.
(1) Effective virtual circuit continuity
Virtual circuit continuity with the byte

stream consistency support for the applica-
tions should not depend on the specific protocol
mechanism. Applications should be able to be
disconnected from the network for the period
they have configured without limitation of the
underlying protocol.
(2) Simplified and minimized imple-
mentation
Modification to existing protocol stacks usu-

ally in kernels and their reconfiguration in the
hosts or the necessity of additional software
components like servers and agents must be
simplified and minimized.
(3) Avoidance of modification in appli-
cations
It is effective for numerous applications to

avoid modification, insertion of additional APIs
into their source code or even re-compilation.
(4) Interfaces for application adapta-
tion
Despite the importance of compatibility with

the existing applications, the schemes and the
interfaces for the explicit redirection and adap-
tation for applications are also required for the
adaptive behavior of the applications.
3.2 Related Approaches
There are some related works which intend to

realize communication continuity. We classify
them by the layer of the OSI reference model
they use.
3.2.1 Network Layer Approach
A network layer protocol provides a global

node identifier and an addressing scheme in
the network and the basic unit of the end-to-
end communication. Movement with the global
node identifier enables end-to-end transparent
reachability independent of the mobile host’s
relocation.
Mobile-IP 3): Mobile-IP is a mobile ex-

tension to IP. Using IP tunneling mechanism
through Home Agent (HA) and Foreign Agent
(FA), a mobile and a correspondent host can
communicate with each other with the same IP

address even after the mobile host’s relocation.
Mobile-IP, however, does not provide effec-

tive virtual circuit continuity in the case of
TCP/IP applications because of the TCP func-
tionality described in Section 2.3.2. A network
layer approach requires an additional mecha-
nism for virtual circuit continuity at the upper
layer.
3.2.2 Transport Layer Approach
A transport layer approach is effective for

communication continuity because a transport
connection protocol can provide the end-to-end
communication byte stream consistency.
TCP-R 5): TCP-R is a modification to

TCP with mobility support. In TCP-R, a mo-
bile host sends its new IP address to its cor-
respondent host after the relocation, and the
both hosts change IP destination address and
port number inside the TCP control block. The
TCP connection is kept alive even after the mo-
bile host relocates, thereby the mobility in TCP
layer is retained. Furthermore, TCP-R provides
continuity for TCP/IP connection. In TCP-
R, the TCP state transition diagram is modi-
fied and “reconnect-timer” is introduced in ad-
dition to the retransmission timer. Using the
reconnect-timer, applications can set the appro-
priate reconnection time-out to TCP, and the
TCP connection continuity is offered to the ap-
plications.
TCP-R itself does not guarantee network

layer mobility, thus combination of TCP-R and
Mobile-IP provides more effective mobility such
as establishment of a new connection after the
mobile host’s relocation.
3.2.3 Session Layer Approach
We here review an approach that is above the

transport protocol or the session layer. It can
be referred to as an application layer approach
in TCP/IP suites 10).
MSOCKS 4): MSOCKS is the architecture

for transport layer mobility. MSOCKS consists
of a MSOCKS library in the mobile host and
a proxy server which splits a TCP connection
between the mobile host and the correspondent
host.
MSOCKS requires neither the kernel imple-

mentation at the mobile host nor the modifi-
cation in applications, by using the linked li-
brary replacement. However, it needs a proxy
server with a modification in kernel, as wells
as MSOCK library in the mobile hosts. Since
MSOCKS does not consider the retransmit
timer in TCP, it is not possible to provide

226 Transactions of Information Processing Society of Japan Feb. 2000

TCP/IP virtual circuit continuity for a period
longer than a temporary disconnection from the
network such as the network interface switch-
ing.
The advantage of the session layer approach is

the unnecessity of the modifications of underly-
ing protocols, such as TCP or IP. The approach
allows to implement the mobility support mech-
anism only at user-level, such as servers or li-
braries. It is possible to accomplish communi-
cation continuity only with the libraries at the
both endpoints, although MSOCK exploits the
proxy aided implementation.
3.3 Discussion on Approaches
A Network layer approach is suited for the

mobility support, but it cannot provide com-
plete connection continuity because of the se-
mantics of the layered network architecture. A
transport layer approach provides effective con-
nection continuity for applications. But, both
approaches require the modification inside the
existing protocol stack and complicate the im-
plementation.
Our MobileSocket exploits the session layer

approach for the communication continuity
support with solving the issues described in Sec-
tion 3.1. It provides effective virtual circuit con-
tinuity for applications. We describe our solu-
tion in detail in the following section.

4. MobileSocket

In this section, we present the design
overview, the functionalities and the applica-
tions of the MobileSocket.
4.1 Design Overview
Design goals of MobileSocket are (1) effec-

tive virtual circuit connection, (2) simplified
and minimized implementation, (3) avoidance
of modification in applications, and (4) inter-
faces for application adaptation, as described
previously.
MobileSocket realizes the session layer com-

munication continuity support, providing the
applications with the one persistent socket con-
nection, while it switches the multiple actual
socket connections internally. Two mecha-
nisms, Dynamic Socket Switching (DSS) and
Application Layer Window (ALW) described in
the next section, support MobileSocket’s func-
tionality.
4.2 Java Library Implementation
MobileSocket is implemented as a class li-

brary in Java language. We use Java Devel-
opment Kit (JDK) 7) 1.1.6 on FreeBSD 2.2.1R.

� ✏
public class MobilityEvent

extends AWTEvent{}

public interface MobilityListener

extends EventListener{

public void MSSuspended(MobilityEvent e)

public void MSResumed(MobilityEvent e)

}

✒ ✑
Fig. 4 Overview of Java-event based adaptation

interface.

The TCP MobileSocket implementation con-
sists of approximately 1,800 lines of Java source
code.
MobileSocket class has the upper com-

patibility to the java.net.Socket class of
JDK. Modifying the CLASSPATH environment
variable, existing Java applications with the
java.net.Socket can use MobileSocket class
without any modification to them.
4.3 Redirection Support
MobileSocket offers both implicit and explicit

operations of connection redirection to applica-
tions.
Implicit redirection scheme is prepared for

the compatibility with the existing Java ap-
plications which use ordinary Socket originally.
In this case, if the mobile host is disconnected
from the network, MobileSocket library detects
it and invokes the implicit redirection and the
application does not need to be aware of the
movement of the host.
On the other hand, explicit redirection

schemes, MobileSocket#suspend and
MobileSocket#resume methods, are prepared
for the mobility-aware applications. Using
these methods, applications are able to suspend
and resume their MobileSocket connections ex-
plicitly.
4.4 Adaptation Interface for Applica-

tions
Figure 4 shows the overview of Mobile-

Socket Java event based adaptation interface
for applications. This interface enables the
adaptive application behavior triggered by the
MobilityEvent from the MobileSocket object.
4.5 MobileSocket Application
Figure 5 shows an example of Mobile-

VideoPlayer with MobileSocket class. The
name of MobileSocket class is expressed as
MobileSocket for clarification in the exam-
ple. In the constructor and the play()
method, there is no difference in the case of

Vol. 41 No. 2　　　　MobileSocket: Session Layer Continuous Operation Support for Java Applications 227

� ✏
import jp.ac.keio.sfc.ht.mobilesocket.*;

public class MobileVODPlayer

implements MobilityListener{

public MobileVODPlayer(String hostname,

int port){

makeGUIInterface();

MobileSocket sock

= new MobileSocket(hostname, port);

sock.addMobilityListener(this);

play();

}

public void play(){

while(true){

int len

= sock.getInputStream()

.read(VideoImage);

drawVideoFrame(VideoImage);

}

}

/*Java Event Handler Methods*/

public void MSSuspended(

MobilityEvent e){

Dialog.setText("EVENT: suspended!");

}

public void MSResumed(MobilityEvent e){

Dialog.setText("EVENT: resumed!");

}

/*Methods for

Explicit Redirection Operation*/

public void suspend(){

sock.suspend();

}

public void resume(){

sock.resume();

}

}

✒ ✑
Fig. 5 MobileSocket example application.

java.net.Socket class. Event handler meth-
ods and explicit redirection methods are op-
tional and for the adaptive application behav-
ior.
MobileSocket provides yet another communi-

cation continuity for Java mobile applications
because our implementation of MobileSocket
class is “serializable”. Object serialization 11)

is one of the major characteristics of Java lan-
guage. If one Java object is an instance of the
class which implements “serializable” interface,

IPCH

CH

CH

CH

IPMH1

MH1

MH1

MH1

Application
(MobileHost)Application

(Correspondent
Host)

IPCH

CH

CH

CH

IPMH1

MH1

MH1

MH1

IPMH2

MH2

MH2

Application
(MobileHost)

After

Application
(Correspondent

Host)

Internal Socket
Connection(2)

Internal Socket
Connection(1)

Before

Fig. 6 Concept of DSS.

this object can be translated into byte stream
using ObjectInput/OutputStream classes, and
can be sent to the remote host across the net-
work through the ordinary byte stream socket
connection. MobileSocket object itself or the
application which uses MobileSocket internally
can be sent from a host to another. With
this characteristic, mobile Java applications can
maintain their MobileSocket connection to the
remote applications even after they are sent to
another host by the object serialization. In this
case, the application does not need to call ex-
plicit suspend() method before the object se-
rialization because the explicit suspend() and
resume() methods are called internally when
the MobileSocket object is serialized and de-
serialized.

5. MobileSocket Mechanism

In this section, we present the mechanism of
MobileSocket. After we describe the DSS and
ALW, we detail the MobileSocket state diagram
and DSS time sequence.
5.1 Dynamic Socket Switching (DSS)
Figure 6 shows the concept of DSS mecha-

nism inside the MobileSocket library.
DSS allows the MobileSocket library to pro-

vide one persistent socket connection to the ap-
plications. Once a MobileSocket connection is
established between the mobile and the corre-
spondent hosts, the applications in the both
sides of the socket can read and write the byte
stream of each other with one lasting socket ob-
ject, even after the mobile host’s relocation. In
contrast, inside the MobileSocket library, a new
socket connection between both applications is
created every time after the mobile host’s re-
location, and switched dynamically to preserve
the virtual circuit connection between the li-
braries.
5.2 Application Layer Window (ALW)
Figure 7 shows the ALW mechanism. ALW

is a user-level sliding window implemented in
the MobileSocket library and maintains the

228 Transactions of Information Processing Society of Japan Feb. 2000

byte stream consistency of the MobileSocket
connection. After the mobile host’s reconnec-
tion with the implicit redirection operation, the
user data already written by the application
can remain in the lost socket connection be-
tween two MobileSocket libraries, in the buffers
of the local protocol stacks, in the network, and
in the buffers of protocol stacks in the remote
host. This causes byte stream inconsistency of
the MobileSocket connection. ALW keeps the
byte stream consistency of the MobileSocket by
re-sending the lost data after the reconnection.
While the MobileSocket connection is estab-

lished, the libraries in both ends of the connec-
tion communicate with each other with ALW-
ACK, the acknowledgment for ALW. As each
user data is sent from the sender to the receiver,
the data is stored in the ALW of the sender. On
the other hand, in the receiver, the number of
bytes the library read from the DataSocket is

MobileSocket
in Sender

MobileSocket
in Receiver

DataSocket

ControlSocket

Data Data

ACK

Data

Application Application

ALW

Data

ACK ACK

Data

ALW_COUNTER

������� ���	��

recv

flush

writestore

count

read

send

Fig. 7 Application layer window.

EstablishedImplicitly
Suspended

Explicitly
Suspended

Closed
Connected to Server
 (DSS-EstablishmentPhase(Client))

Connected from Client
 (DSS-EstablishmentPhase(Server))

Lost IP address

Get IP address
 (Reconnect to CH, DSS-

ImplicitResume Phase)

Reconnected from MH
(DSS-ImplicitResume Phase)

 Called suspend()
 (send SUSPEND_SIGNAL,
 DSS-ExplicitSuspend Phase)

 Called resume()
 (Reconnect to CH, DSS-
 ExplicitResume Phase)

 reconnected from MH
(DSS-ExplicitResume Phase)

received SUSPEND_SIGNAL
 (DSS-ExplicitSuspend Phase)

DataSocket broken-pipe

Reconnected from MH
(DSS-ImplicitResume Phase)

Called close()
(close connection)

Called close()
or timedout

(close connection)

Called close()
(close connection)

Called close()
(close connection)

Called close()
or timedout

(close connection)

Normal Transitions for CH
Normal Transitions for MH

Normal Transitions for Client
Normal Transitions for Server

����������������
�������

�
��
�����

State

Fig. 8 MobileSocket state transition diagram.

stored in ALW COUNTER. When the value of
ALW COUNTER becomes equal to the ALW
length, the receiver sends ALW ACK to the
sender over ControlSocket. At the sender, af-
ter ALW is filled up with the user data, library
waits for ALW ACK from the receiver. The
sender is able to write more user data only af-
ter it receives ALW ACK.
In the case of Implicit Redirection, it is pos-

sible that some user data already sent by the
sender cannot be read by the receiver side. To
maintain the same TCP socket semantics for
the applications as the normal socket interface,
it is necessary to provide the byte stream con-
sistency. In the phase of DSS implicit resum-
ing, both MobileSocket libraries exchange the
number of bytes they individually have read. If
there is difference between the number of bytes
the host wrote and the number of bytes the re-
mote read, it means that the user data is lost.
By sending the user data stored in ALW to the
remote again, MobileSocket achieves the byte
stream consistency.
5.3 MobileSocket State Transition
Figure 8 shows the state transition of Mo-

bileSocket. There are mainly four states in Mo-
bileSocket, “Closed”, “Established”, “Implic-
itlySuspended”, and “ExplicitlySuspended”.

In “Closed” state, the MobileSocket connec-
tion is not connected to the remote host. In
“Established” state, the connection between
two MobileSocket libraries is established and
applications at the both ends can communi-

Vol. 41 No. 2　　　　MobileSocket: Session Layer Continuous Operation Support for Java Applications 229

MH

ALW
Adjustment

DSS-
ExplicitSuspend
Phase

	��������

Explicity
SuspendedState

CH
��������	

������	

������

Mobility
Preparation

�����	��� Established
State

DSS-
ExplicitResume
Phase

Established
State

Client Server

������

Mobility
Preparation

DSS-
Establishment
Phase

�����	��� Established
State

Closed
State

MH

Implicitly
SuspendedState

CH

������

ALW
Adjustment

�����	��� Established
State

DSS-
ImplicitResume
Phase

Established
State

������
�����������

�����
����

�����������	
����
�����

������������������� 	������������������

Mobility
Preparation

Fig. 9 DSS time sequence.

cate with each other through the MobileSocket.
In “ExplicitlySuspended” state, the connection
between the libraries is disconnected after the
explicit suspend API is called by the appli-
cation. The applications cannot communicate
with each other unless they call resume API of
MobileSocket. In “ImplicitlySuspended” state,
the MobileSocket connection is disconnected
implicitly by the libraries itself without any ex-
plicit API called from the applications.
In the state transition of MobileSocket,

Closed state transits to Established state by
connecting the initial socket connection. State
transitions between Established and Explicitly
Suspended are triggered by calling suspend()
and resume() interfaces at the mobile host.
Transitions between Established and Implicitly
Suspended are triggered by the mobile host’s
sensing of the IP address reconfiguration.
5.4 DSS Time Sequence
In DSS, there are four distinguished phases,

“DSS-Establishment Phase”, “DSS-Explicit
SuspendPhase”, “DSS-Explicit ResumePhase”,
and “DSS-Implicit ResumePhase”. Figure 9
shows the overview of DSS time sequence at
the connection establishment, suspending, and
resuming.
5.4.1 DSS-EstablishmentPhase
DSS-EstablishmentPhase is performed when-

ever the MobileSocket connection is be-
ing established. Figure 10 shows DSS-
EstablishmentPhase.
DSS-EstablishmentPhase is described as fol-

lows.
(1) The client connects a DataSocket connec-

������ ���	��
Data
Socket

Control
Socket

��������� ����	���

����������	
�����������
����
����������

����	������������

���

����
��������������

�
�
�
��
�
��
�
	

�
�
�

�
��
�
�
�
�

Redirection
ServSocket

�
���
������
��
��������
�������

����

���	
�����������

Data
Socket

Control
Socket

Redirection
ServSocket

�����
�����

�����
�����

�����
�����

�����
�����

Fig. 10 DSS-EstablishmentPhase.

tion to the server.
(2) The server starts ControlSocket, a server

socket, after the DataSocket acceptance,
and sends its port number and a seed for
authentication to the client.

(3) The client makes a ControlSocket con-
nection to the server with the port num-
ber and seed client just received.

(4) After the authentication has succeeded,
the both sides create RedirectionServer-
Socket, which is a server socket for the
next connection after the mobile host re-
location.

(5) The client and the server exchange the
port numbers and the authentication
seeds of RedirectionServerSockets.

(6) Actual byte stream communication be-
tween applications starts.

Relation between the client and the server
does not depend on which side will be the Mo-
bile Host (MH) that suspends and resumes con-
nection, and which side will be the Correspon-
dent Host (CH) that is suspended and resumed
connection by the MH. Therefore the libraries
at both sides create RedirectionServerSocket for
the mobility.
5.4.2 DSS-ExplicitSuspendPhase
DSS-ExplicitSuspendPhase is triggered by

suspend() API (Java method) called from the
application at the MH. In this phase Mobile-
Socket locks writing and reading to and from
the socket, confirms that all of byte stream data
was read by remote host, and closes connection.
Figure 11 shows the time sequence of DSS-

ExplicitSuspendPhase.
DSS-ExplicitSuspendPhase is described as

follows.
(1) As suspend() API is called by the appli-

cation on the MH, the MH informs the
CH about the explicit suspend phase by

230 Transactions of Information Processing Society of Japan Feb. 2000

��������� �����������������
Data
Socket

Control
Socket

���

���

��� �����!"��#

�
�
�
��
�
�
	

�

�
�
�
�
�

�
�
��
�
�
�

Redirection
ServSocket

��!$���%��$��

Data
Socket

Control
Socket

Redirection
ServSocket

���

��	��������
��	��������

���������	������������
�����������

���������	������������
�����������

����&�!''�!��(��%)

������

������

������

�
�
�
�

�
�
��
�
�
�
�
�
�

Fig. 11 DSS-ExplicitSuspendPhase.

sending SUSPEND SIGNAL through the
ControlSocket.

(2) After both sides of connection have
locked the stream, they exchange
WRITE COUNTER which indicates the
number of bytes the host wrote to the
socket.

(3) Each side calculates the difference be-
tween its own READ COUNTER and
the WRITE COUNTER from the re-
mote.

(4) The library unlocked reading from the
socket once if there is any difference be-
cause it means that the host should read
this “difference” of bytes additionally.
Confirming that the application has read
the appropriate bytes of data, the library
locks reading again.

(5) After the MH makes sure that both the
MH and the CH have locked the stream
finally, it close both DataSocket and Con-
trolSocket connection.

5.4.3 DSS-ExplicitResume Phase
DSS-ExplicitResumePhase is triggered by

resume() API called from the application at
the MH, when the MH is in “ExplicitlySus-
pended” state.
In this phase, the MH reconnects to the

RedirectionServerSocket of the CH with a
new DataSocket connection. Except the
initial authentication checking, this phase
is just like DSS-EstablishmentPhase. Fig-
ure 12 shows the time sequence of DSS-
ExplicitResumePhase.
DSS-ExplicitResumePhase is described as

follows.
(1) The MH creates new DataSocket connec-

tion to the RedirectionServerSocket of
the CH.

Control
Socket

Redirection
ServSocket

DataSocket
Data
Socket

Control
Socket

Redirection
ServSocket

New
Redirection
ServSocket

Fig. 12 DSS-ExplicitResumePhase.

(2) If the authentication has succeeded, the
port number of the ControlSocket server
and the seed for ControlSocket is sent to
the MH from the CH.

(3) With these port and seed, the MH estab-
lishes a ControlSocket connection to the
CH.

(4) After the authentication checking, the
MH and the CH exchanges their next
RedirectionServerSocket’s port number
and seed.

(5) Applications at the both ends restart
their communication after MobileSocket
unlocked the connection.

5.4.4 Implicit Suspending and DSS-
ImplicitResumePhase

When MobileSocket detects that the host has
lost its IP address, the library transits into
“ImplicitlySuspended” state. And the DSS-
ImplicitResumePhase is triggered by sensing
the host’s reconnection to the network. In DSS-
ImplicitResumePhase, after the MH obtains a
new IP address, the MH connects to the Redi-
rectionServerSocket of CH and reconstructs the
MobileSocket connection, supported by ALW
retransmission. Figure 13 shows the time se-
quence of the implicit suspending and DSS-
ImplicitResumePhase.
(1) After MobileSocket in the MH senses ob-

taining a new IP address, the MH estab-
lishes a new DataSocket connection to
the CH’s RedirectionServerSocket.

(2) As the CH accepts this connection, the
CH switches the socket and treats this
socket as a new DataSocket.

(3) After the authentication checking, the
CH sends the port number of Control-
Socket and the next seed back to the MH
as well as starts ControlSocket server.

Vol. 41 No. 2　　　　MobileSocket: Session Layer Continuous Operation Support for Java Applications 231

Control
Socket

Redirection
ServSocket

DataSocket
Data
Socket

Control
Socket

Redirection
ServSocket

New
Redirection
ServSocket

Fig. 13 Implicit Suspending and DSS-
ImplicitResumePhase.

(4) After the authentication checking of
ControlSocket, the both sides exchange
READ COUNTERs, which indicate the
number of bytes each host already read
from the last internal socket connection.

(5) Both of the MH and the CH calcu-
late the difference between their own
WRITE COUNTER and the
READ COUNTER from remote individ-
ually and retransmit the “difference”
bytes of data to the remote from their
own ALW.

(6) Both libraries unlock the DataSockets
and applications restart to communicate
with the new socket.

6. Performance Measurement

In this section, we present the performance
evaluation of the connection redirection in the
MobileSocket library. We can see some over-
heads which can be reduced more by source
code optimization, while the performance of in-
ternal socket depends on the Java environment.
6.1 Evaluation Environment
Table 1 shows the platform we evaluated

MobileSocket. The mobile host and the cor-
respondent host are connected through an iso-
lated 10Mbps Ethernet. In both of these hosts,
we use FreeBSD 2.2.1-RELEASE version with
PAO-970616 12), PC Card support package, and
Java Development Kit (JDK) 1.1.6. The fol-
lowing results are the mean values of 100 times
measurements.

Table 1 Specification of hosts for performance
evaluation.

Host Mobile Host Correspondent Host
PC Dynabook SS-R590 VAIO PCG-737

(TOSHIBA) (SONY)
CPU Pentium 90MHz MMX Pentium 233MHz
Memory 40MB 40MB
OS FreeBSD 2.2.1-RELEASE with PAO-970616
JavaVM JDK 1.1.6.V98-7-21 for FreeBSD

Table 2 Detail of DSS-ExplicitSuspend phase.

Steps Time (msec) Percentage (%)
manage Phase Transition 1.76 3.77
lock Socket 7.40 15.86
kill Sub-Thread 8.12 17.40
send SUSPEND SIGNAL 1.17 2.50
send WRITE COUNTER 5.35 11.46
receive ACK from CH 11.01 23.59
(wait for process in CH)
receive port number 1.11 2.38
receive Authentication Seed 1.85 3.96
close Socket 3.28 7.03
prepare Info. of Next Socket 1.02 2.19
Miscellaneous 4.60 9.86
Total 46.67 100.00

Table 3 Detail of DSS-ExplicitResume phase.

Steps Time Percentage
(msec) (%)

make new DataSocket 80.75 29.88
switch Socket in Stream 0.36 0.13
Authentication Check for DataSocket 2.95 1.09
receive port of ControlSocket 1.11 0.41
receive Authentication Seed 1.89 0.70
make new ControlSocket 80.80 29.90
Authentication Check for ControlSocket 3.30 1.22
make new NextServerSocket 60.44 22.36
exchange of Next-port and AuthSeed. 6.62 2.45
restart Sub Thread 26.56 9.83
manage Phase Transition 0.90 0.33
Miscellaneous 4.60 1.70
Total 270.28 100.00

6.2 Evaluation 1: Explicit Suspending
and Resuming

We measured the time consumed in
MobileSocket.suspend() method, the explicit
API to suspend MobileSocket connection, and
MobileSocket.resume() method, the explicit
connection resuming API. After the two Java
application establish a MobileSocket connec-
tion, we measured the time with the suspend()
and resume() method at the mobile host.
Result
Table 2 shows the detailed times which

are consumed in each process of DSS-
ExplicitSuspend Phase, and Table 3 shows
those of DSS-ExplicitResume Phase. suspend()
consumes 46.67 milli-seconds, and resume()
consumes 270.28 milli-seconds.
In the DSS-ExplicitSuspend Phase, except

the waiting for ACK from the correspondent
host, locking of Socket and killing of sub thread
spends relatively higher ratio of the whole op-
eration. The mutual exclusion class, used in
the locking part, is made for the serializable
class, in order to make MobileSocket class seri-
alizable, and it causes overhead. Thread termi-
nation in Java depends on the implementation

232 Transactions of Information Processing Society of Japan Feb. 2000

Table 4 Detail of DSS-ImplicitResume phase.

Steps Time Percentage
(msec) (%)

make new DataSocket 78.39 24.67
Authentication Check for DataSocket 3.34 1.05
receive port of ControlSocket 1.10 0.35
receive Authentication Seed 1.82 0.57
make new ControlSocket 79.57 25.04
Authentication Check for ControlSocket 3.53 1.11
make new NextServerSocket 58.47 18.40
exchange of Next-port and AuthSeed. 6.68 2.10
exchange of READ COUNTER 3.69 1.16
resend unACKed Data from ALW 0.21 0.07
restart Sub-Thread1 48.03 15.12
restart Sub-Thread2 25.91 8.16
manage Phase Transition 0.89 0.28
switch Socket in Stream 0.22 0.07
Miscellaneous 5.93 1.85
Total 317.78 100.00

of Java Virtual Machine. Concerning about the
waiting for the acknowledgment from the cor-
respondent host, two MobileSocket libraries in
the both ends of the connection need to confirm
that all data bytes written into the socket as
been already read by the remote library. There-
fore, time for synchronization is needed in the
both libraries.
In the DSS-ExplicitSuspend Phase, establish-

ments of three internal sockets have large over-
head and consume 82.14% of the whole opera-
tion. In contrast, we can optimize the rest ap-
proximately 20% of operation by polishing our
implementation, while the socket performance
depends on Java compiler and the Java Virtual
Machine (VM).
6.3 Evaluation 2: Implicit Resuming
We also measured the time consumed in the

implicit resuming phase of MobileSocket. In
this case, only DSS-ImplicitResumePhase is
performed between the two hosts at the period
of mobile host’s reconnection.
In our measurement, by removing PC-Card

Ethernet card from the PC-Card slot, we dis-
connected the mobile host from network after
the initial MobileSocket connection was estab-
lished. Then, we measured the time of the op-
eration when we connected the mobile host to
the network again.
Result
Table 4 shows the result of this measure-

ment. DSS-ImplicitResumePhase needs 317.78
milli-seconds. Also in this phase, three internal
sockets’ creation consumes 216.43 milli-seconds,
approximately 68% of all. And two sub-threads
creation consumes 73.94 milli-seconds, approxi-
mately 23%. These creation of sub-threads can
be reduced by optimizing the source code and
the class structure, while we cannot avoid the
sockets’ creation in MobileSocket and perfor-
mance of making socket depends on the perfor-
mance of Java environment.

7. Discussion

In this section, we present our functional
comparison between MobileSocket and some re-
lated works described in Section 3.2. Table 5
andTable 6 show the results of functional com-
parisons. We compared these works from the
view points of (1) mobility, (2) virtual circuit
continuity, (3) implementation, and (4) appli-
cation.
(1) Mobility
When we consider the mobility of hosts, a

pair of a mobile server and a correspondent
client as well as a pair of a mobile client and a
correspondent server should be taken into con-
sideration. To accommodate these, MSOCKS
requires modification to the proxy and the li-
brary in the correspondent client. On the other
hand, our MobileSocket and TCP-R are able to
accommodate these with Mobile IP.
When both the server and the client are mo-

bile hosts, the simultaneous relocation of the
either hosts is possible. Mobile-IP, TCP-R
with Mobile-IP, and MobileSocket with Mobile-
IP can handle this situation, while MSOCK
with Mobile-IP requires the modification in the
proxy.
(2) Virtual Circuit Continuity
On Virtual circuit continuity, MobileSocket

and TCP-R provide the TCP connection conti-
nuity without the limitation of the TCP timers
and MobileSocket also allows the applications
both implicit and explicit redirection. Virtual
circuit continuity of MSOCKS and Mobile-IP is
limited to the TCP timers.
(3) Implementation
One of the design features of MobileSocket

is the simplified and minimized user-level im-
plementation. MobileSocket realizes its func-
tionalities with only libraries in the mobile and
the correspondent hosts, while others need the
modifications to the existing protocol and the
additional software components such as the
proxy or the agents.
Although MSOCKS and MobileSocket have

two similarities, (1) user-level implementation
with the layer above TCP protocol, (2) user-
level sliding window mechanism, they have dif-
ferent implementation approaches, the external
proxy server and the library at the correspon-
dent host. As the background of this difference,
there are the granularity differences of the dis-
connection period and the relocation scale be-
tween them. MSOCKS focuses mainly on the

Vol. 41 No. 2　　　　MobileSocket: Session Layer Continuous Operation Support for Java Applications 233

Table 5 Functional comparison.

(1) Mobility (2) Virtual Circuit Continuity
Name Layer Mobile Server Simultaneous Redirection

Situation Relocation Scheme
Mobile-IP IP Yes Yes Limited(*3) N/A
TCP-R TCP Limited(*1) Limited(*2) Yes Implicit
MSOCKS Socket No No Limited(*3) Implicit
MobileSocket Socket Upper Limited(*1) Limited(*2) Yes Implicit / Explicit

Table 6 Functional comparison (Cont’d).

(3) Implementation (4) Application
Name MH Additional CH Application Adaptation for Mobile

Software Modification Interface Application
Mobile-IP M(IP), A (daemon) HA,FA unnecessary No N/A N/A
TCP-R M(TCP) unnecessary M (TCP) No No N/A
MSOCKS A (library) Proxy (M (TCP)) unnecessary No N/A N/A
MobileSocket A (library) unnecessary A (library) No Yes Yes

“M (x)”... modify x, “A (x)”... add x
Limited(*1)... Only after the connection is established, server can relocate, otherwise it needs Mobile-IP.
Limited(*2)... Only when it works with Mobile-IP.
Limited(*3)... Limited to the TCP timers.

situation of (1) the disconnection shorter than
the TCP retransmission timeout and (2) the
rather local relocation such as the roaming at
the wireless LAN. In such a situation, the proxy
approach which does not require the modifica-
tion in the correspondent host is effective and
the affection of the triangle routing may not
be critical. MobileSocket, in contrast, focuses
mainly on the situation of (1) longer discon-
nection than the TCP retransmission timeout
and (2) relocation in the wide area network
such as the ones between the campus and of-
fice. In this situation, proxy approach causes
the wide area triangle routing problem, and
the MSOCKS cannot be used for the discon-
nection longer than the retransmission timeout.
MobileSocket with the peer-to-peer library ap-
proach does not cause the routing problem, and
can keep the connection longer than MSOCKS.
(4) Application
MobileSocket provides its functionalities

without any modification to applications as
same as the others. Also, MobileSocket has
adaptation interfaces for applications. This
function enables appropriate behavior of appli-
cation towards the dynamic change of the com-
puting environment. Our Java library imple-
mentation allows Java mobile applications or
the agents with the MobileSocket connections
to migrate to another host using the Java Ob-
ject Serialization, even with the active Mobile-
Socket connection to the remote.

8. Conclusion and Future Work

In this paper, we have presented Mobile-
Socket, a user level library-based solution of the
communication continuity support to the appli-
cations. Session layer approach and the user-
level library installation in the mobile and the

correspondent hosts simplify and minimize the
implementation. The combination of DSS and
ALW achieves the byte stream consistency for
the TCP Socket connection. Java event-based
adaptation interfaces of MobileSocket realize
the application level adaptation toward the mo-
bile host’s relocation. According to our func-
tional comparison between some related works
and MobileSocket, MobileSocket provides ap-
plications the communication continuity and
the adaptation interface despite its simple im-
plementation.
We plan two future works. The first one is

the optimization of the implementation. Per-
formance of socket creation in Java, which is
the current serious overhead at the redirection
phase of MobileSocket, should be optimized and
improved. The second one is the application of
the user level approach for the communication
continuity to other resources, such as the file de-
scriptor or the host specific devices. This will
be effective for mobile applications and agents,
which dynamically migrate between the hosts
with the IPCs or local resources left opened.
Acknowledgments The authors would

like to thank Keio Media Space Family (KMSF)
group, R3 Project group in Keio University, Dr.
Antony Rowstron, and Open Media Research
Group, Department of Engineering, University
of Cambridge for valuable discussions and com-
ments.

References

1) Bharat, K. and Cardelli, L.: Migratory Appli-
cations, ACM Symposium on User Interfaces
Software and Technology (1995).

2) Richardson, T., Stafford-Fraser, Q., Wood, K.
and Hopper, A.: Virtual Network Computing,
IEEE Internet Computing, Vol.2, No.1, pp.33–

234 Transactions of Information Processing Society of Japan Feb. 2000

38 (1998).
3) Perkins, C.: IP mobility support (1996). RFC
2002, Internet Request For Comments.

4) Maltz, D. and Bhagwat, P.: MSOCKS: An Ar-
chitecture for Transport Layer Mobility, Pro-
ceedings of the Seventeenth Annual Joint Con-
ference of the IEEE Computer and Communi-
cations Societies, pp.1037–1045 (1998).

5) Funato, D., Yasuda, K. and Tokuda, H.:
TCP-R: TCP Mobility Support for Continuous
Operation, Proceedings of IEEE International
Conference on Network Protocols 97, pp.229–
236 (1997).

6) Gosling, J., Joy, B. and Steele, G.: The Java
Language Specification, Addison Wesley, Read-
ing, MA (1996).

7) Sun Microsystems inc.: Java Developpers Kit
(JDK) Version 1.1.6 (1997).
http://www.javasoft.com/.

8) Wright, G.R. and Stevens, W.R.: TCP/IP Il-
lustrated, Volume 2, Addison Wesley, Reading,
MA (1995).

9) Branden, R.: Requirements for Internet Hosts
– Communication Layers, RFC 1122, Internet
Request For Comments (1989).

10) Postel, J.: Internet Protocol, RFC 791, Inter-
net Request For Comments (1981).

11) Sun Microsystems Inc.: Object Serialization
Specification (1996).

12) Hosokawa, T.: PAO: FreeBSD Mobile Com-
puting Package.
http://www.jp.freebsd.org/PAO/.

(Received April 30, 1999)
(Accepted October 7, 1999)

Tadashi Okoshi received his
B.S. degree in Environmental
Information from Keio Univer-
sity in 1998. He is a mas-
ter’s course student at gradu-
ate school of Media and Gover-
nance, Keio University. He is

currently studying adaptive middleware in mo-
bile computing environments. He is a member
of the ACM and the IEEE Computer Society.

Masahiro Mochizuki re-
ceived his B.A. degree in Pol-
icy Management from Keio Uni-
versity in 1994. He received his
M.A. degree in Media and Gov-
ernance from Keio University in
1996. He is a Ph.D. Candidate

at graduate school of Media and Governance,
Keio University. He is currently studying mo-
bile and adaptive middleware and applications.
He is a member of the ACM and the JSSST.

Yoshito Tobe is a research
staff at Keio Research Insti-
tute at SFC, where he is cur-
rently studying QoS-aware pro-
tocol processing implementa-
tion. He is a member of the
IEEE Communication Society,

the ACM, and the IEICE.

Hideyuki Tokuda received
his B.S. and M.S. degrees in
electrical engineering from Keio
University in 1975 and 1977, re-
spectively; a Ph.D. degree in
computer science from the Uni-
versity of Waterloo in 1983. He

joined the School of Computer Science at
Carnegie Mellon University in 1983, and is an
Adjunct Associate Professor from 1994. He
joined the Faculty of Environmental Informa-
tion at Keio University in 1990, and is a pro-
fessor since 1996. His current interests include
distributed operating system and computer net-
works. He is a member of the ACM, the IEEE,
the IEICE, and the JSSST.

