
Vol. 41 No. 2 Transactions of Information Processing Society of Japan Feb. 2000

Regular Paper

Pseudo-active Replication in Wide-area Network

Hiroaki Higaki,† Katsuya Tanaka† and Makoto Takizawa†

In order to realize mission-critical applications in distributed systems, the systems are re-
quired to be fault-tolerant. In this paper, we discuss how to replicate a server in order to obtain
fault-tolerant services. In the active replication, all the requests from a client are performed
by all the server replicas in the same order. The replicas are rather placed on heterogeneous
computers and the distributed applications are now being realized in wide-area networks, e.g.,
the Internet, where each communication channel has different message transmission delay and
bandwidth. Hence, the response times of the replicas observed by the clients are not the same.
We newly propose a pseudo-active replication where the client does not wait for any response
after receiving one response and slower replicas do not perform every request performed by
the faster replicas.

1. Introduction

Client-server applications are widely devel-
oped in a world-wide manner by using the
Internet. Here, in order to implement mis-
sion critical applications, the systems are re-
quired to be fault-tolerant. One way to realize
fault-tolerant applications is an active replica-
tion1),5),6),11),13). In the active replication, all
the replicated objects are required to be syn-
chronized to perform all the requests issued by
the clients in the same order. Each replica may
be placed on a different kind of computer with
different processing speed and different level of
reliability.
Therefore, the synchronization among the

replicas induces an additional time-overhead.
The response time for the application in a client
depends on the speed of the slowest replica.
The authors propose a pseudo-active replica-
tion8),14). Here, after receiving a response from
the fastest replica, the client does not wait for
all the other responses. Here, not all the repli-
cas are required to be synchronized. By using
the pseudo-active replication, the synchroniza-
tion overhead is reduced and the response time
for the application in the client is also reduced.
In the proposed protocol for the pseudo-

active replication discussed in Refs. 8) and 14),
the difference of processing speed among the
replicas is measured by a client according to
the receipt order of response messages from the
replicas. This method works well in a local-area
network. However, in the wide-area networks,

† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

the response time is affected by not only the
processing speed but also the message transmis-
sion delay. If the replicas are distributed in a
wide-area network and multiple clients commu-
nicate with them, a pair of clients may take dif-
ferent replicas as faster ones. In this paper, we
propose a novel protocol to realize the pseudo-
active replication in a wide-area network. In
the pseudo-active replication, a slower replica
omits some requests waiting to be performed in
the queue in order to catch up with the fastest
one8),14). In the proposed protocol, the process-
ing order of requests from multiple clients are
intentionally changed in each replica. By using
this method, the response time for the requests
from clients is reduced and the total process-
ing time in the replicated objects may be also
reduced.
In Section 2, we review the pseudo-active

replication and discuss the implementation of
pseudo-active replication for a heterogeneous
wide-area network. In Section 3, we show a
protocol for realizing our idea and some prop-
erties satisfied by our protocol. In Section 4,
we show the evaluation results of our protocol.

2. Pseudo-active Replication in Wide-
area Networks

2.1 System Model
In the network system S, objects are dis-

tributed in servers. An object oi is composed of
data and operations for manipulating the data.
Applications in clients send request messages to
servers to manipulate objects and the servers
send the response message back to the clients.
On receipt of the request, a server invokes an
operation specified by the request message to

201

202 Transactions of Information Processing Society of Japan Feb. 2000

ci oj1 oj2 oj3 ci oj1 oj2 oj3

Passive replication Active replication

req

rep

req’

rep’

sync

req

rep
rep

rep
CP CP

Fig. 1 Passive and active replication.

manipulate an object. In order that the appli-
cation programs are executed fault-tolerantly in
S, each object os

j is replicated and the replicas
of the object are located on different computers.
Here, let ojk (k = 1, . . . , nj) denotes a replica
of an object oj . Each replica is composed of the
same data and the same operations.

2.2 Passive and Active Replication
There are two main approaches to replicat-

ing objects in servers: passive and active repli-
cations (Fig. 1). In the passive replication3),4),
only one of the replicas is operational. That is,
it receives request messages from clients, per-
forms them, and sends back response messages
to clients. The operational replica is the pri-
mary one. The other replicas are passive, i.e.,
these replicas do not invoke any operation. A
client ci sends a request message only to the
primary replica oj1. oj1 invokes the operation
requested by ci and sends back a response mes-
sage to ci. oj1 sometimes sends the state infor-
mation to the other replicas ojk (2 ≤ k ≤ nj)
and every ojk updates the state information.
This is called a checkpoint. If oj1 fails, one of
the passive replicas, say oj2, takes over oj1 and
becomes the primary replica. Here, oj2 restarts
the execution of the application from the check-
point taken most recently. Hence, the recov-
ery procedure takes time because oj2 has to re-
invoke the operations that the failed primary
replica oj1 has already finished before the fail-
ure.
On the other hand, in the active replica-

tion1),2),5),6),11),13), all the replicas are opera-
tional. A client ci sends request messages to
all the replicas ojk (1 ≤ k ≤ nj) of an ob-
ject oj . Every replica ojk invokes the opera-
tion requested by ci and sends back a response
message to ci. After receiving all the response
messages, ci delivers the response message to
the application. Since every operational replica

oj1 oj2 oj3

op op op

ci

mj1
mj2
mj3

Synchronization
Overhead

Fig. 2 Synchronization overhead in active
replication.

synchronously performs the same requests, the
applications can be performed as long as there
exists an operational replica and the recovery
procedure requires less time-overhead than that
in the passive replication.

2.3 Pseudo-active Replication
In the conventional active replication, all the

replicas oj1, . . . , ojnj
of an object oj are syn-

chronized to perform the same request mes-
sages in the same order. Here, the computers
on which the replicas are located are assumed
to be the same kind, i.e., computers with the
same processing speed and the same reliability,
and connected with the same local-area net-
work. That is, it takes almost the same time
to perform a requested operation and to trans-
mit a request message and a response message
between a client ci and the replicas ojk. There-
fore, ci can receive every response message from
the replicas ojk at almost the same time. This
assumption is reasonable only in a local-area
network.
However, a wide-area network like the In-

ternet is intrinsically heterogeneous. Different
kinds of computers are connected with differ-
ent kinds of networks. That is, there are differ-
ent types of computers with respect to process-
ing speed, reliability and availability, and differ-
ent types of networks with respect to message
transmission delay and message loss ratio 15).
Here, it is difficult for a client to receive all the
response messages from the replicas simultane-
ously. In Fig. 2, a client ci delivers the result of
an operation op to the application after receiv-
ing the response message mj3 from the slowest
replica oj3, i.e., the application in ci is blocked
until receiving mj3.
The authors have proposed a pseudo-active

replication8),14) where a client ci only waits for
the first response message from some replica
ojk under an assumption that only the stop-
faults occur in the replicas, i.e., no failed replica

Vol. 41 No. 2 Pseudo-active Replication in Wide-area Network 203

ojk ojk’

faster
slower

ci

mi

mjk

mjk’

Fig. 3 Pseudo-active replication.

sends a message to another one12). On receiv-
ing the first response message from the replicas,
the client ci delivers the result to the applica-
tion before receiving all the response messages.
Hence, the response time in ci can be shorter
and the synchronization overhead in S is re-
duced. However, since the replicas are placed
on heterogeneous computers and are not syn-
chronized, some replica ojk′ might have per-
formed all the request messages from clients
and some requests are still left to wait to be
performed in the queue in another replica ojk′′

because ojk′′ is placed on a slower computer.
In this case, if ojk′ fails, the recovery proce-
dure takes longer time than the conventional ac-
tive replication because ojk′′ has to perform the
request messages which ojk′ has already per-
formed before the failure occurs as shown in
the passive replication.
In order to solve this problem, we introduce

the following two methods in the pseudo-active
replication:
1. Each client ci notifies each replica ojk of
which replica is faster or slower.

2. If a replica ojk′ is notified to be slower,
ojk′ omits some request messages from
clients in order to catch up with the faster
replicas.

Suppose that a client ci waits for response
messages mjk and mjk′ , and sends a request
message mi. In Refs. 8) and 14), we define
faster/slower replicas based on the causal re-
lationship9) among these messages (Fig. 3).
[Definition: faster/slower replicas]
If mjk → mi and mjk′ �→ mi, where m → m′
denotes a message m causally precedes another
message m′, ojk is followed by ojk′ . Here, ojk

and ojk′ are defined to be a faster and a slower
replicas, respectively. ✷

2.4 Pseudo-active Replication in a
Wide-area Network

In a wide-area network, server computers on
which the replicas of an object oj are placed

ojk ojk’

faster

slower

ci ci’

slower

faster

Fig. 4 Pseudo-active replication in a wide-area
network.

may be connected with different sub-networks,
e.g., one is in Japan and another is in Europe,
for executing mission-critical applications more
fault-tolerantly. In addition, clients are also dis-
tributed in a world-wide area. Clients cannot
estimate the processing speed of a replica by
measuring the response time in such a wide-
area network environment. For example, all the
replicas may be informed to be slower as shown
in Fig. 4.
In Fig. 4, suppose a pair of a client ci and a

replica ojk are nearer and another pair of ci′

and ojk′ are also nearer. Also suppose that the
replicas ojk and ojk′ are farther. This means
that it takes longer to send a message to ci from
ojk than ojk′ . Here, suppose that ojk and ojk′

send the response messages mi
jk and mi

jk′ to
both of the clients ci and ci′ . ci receives the
response message mi

jk and then sends a next
request message to ojk and ojk′ . On the other
hand, ci′ receives the response messagemi′

jk′ be-
fore mi′

jk because ojk′ is nearer to ci than ojk.
Then, ci′ sends a next request message to ojk

and ojk′ before receiving mi′
jk′ . Here, ci consid-

ers that ojk is faster than ojk′ but ci′ considers
that ojk′ is faster than ojk. Hence, both ojk

and ojk′ are informed to be slower and invoke
the procedure to omit the waiting requests.
Let R(ci, ojk) denotes a response time from

a replica ojk to a client ci. The difference
|R(ci, ojk)−R(ci, ojk′)| is influenced by the dif-
ference between the processing speeds of ojk

and ojk′ and the difference between the message
transmission delays to ci from ojk and ojk′ . In
addition, the network system usually consists
of multiple clients distributed in a wide-area
network. Hence, the processing speed observed
based on the receipt order of the response mes-
sages for the previous request in a client is rel-
ative and does not show the difference of pro-
cessing speed in the replicas. Therefore, it is
not suitable for a pseudo-active replication in a

204 Transactions of Information Processing Society of Japan Feb. 2000

wide-area network.
The requests which can be delivered but are

not yet delivered to the application are called
waiting request messages. The waiting request
messages are queued in an application queue
(APQ). In the paper of Ref. 7), the length of
APQ is used as a metric of the processing speed
of each replica and is piggied back with a re-
sponse message transmitted from the replica to
a client. However, if multiple clients near to the
faster replica send request messages burstly, the
APQ of the faster replica might be longer than
that of the slower replica temporally. In or-
der to solve this problem, a sequence number
SEQ is assigned to the request message per-
formed most recently. SEQ is used to be a
metric of the speed of the computer on which
a replica is placed. Here, a request message is
carried by using a total ordering protocol pro-
posed in Ref. 3). SEQ is piggied back with the
message. According to the following protocol,
slower replicas are found. Suppose that a client
ci requests a server to perform a request R on
a replica ojk of an object oj .
1. A client ci sends a reservation message

Res(R) to every replica ojk of oj .
2. On receipt of Res(R), ojk sends back a
confirmation message Conf(R) to ci with
a sequence number SEQjk(R).

3. After receiving all the Conf(R) messages,
ci sends a request message Req(R) to every
ojk with the maximum sequence number
MSEQ(R) = maxk SEQjk(R) assigned to
the received Conf(R) messages. Req(R)
message carries R.

4. On receipt of Req(R), each ojk enqueues
R to APQjk. In APQjk, R is sorted by the
maximum sequence number MSEQ(R).

Here, the sequence number SEQjk(R) assigned
to the request most recently performed in a
replica ojk is piggied back with the Conf(R)
message. By receiving Conf(R) from all the
replicas, the client ci can find which replica is
slower. Ideally, the client oc

i receives Conf(R)
from all the replicas simultaneously. However,
it is impossible in a wide-area network due to
the difference of message transmission delays.
Hence, we introduce a certain threshold value
to find slower replicas. Only if the difference
between the sequence numbers of some replica
ojk and another is larger than this threshold,
ojk is considered to be a slower replica.
In order for a slower replica ojk′ to catch up

with the faster one ojk, ojk′ omits some waiting

request messages in the queue and does not per-
form them. Here, let op◦op′ be a concatenation
of a requested operations op and op′. Let op(s)
denote a state of an object after op is performed
in a state s.
[Definition: an identity request]
An operation op is an identity operation iff
op(s) = s for every state s. ✷

[Definition: an idempotent request]
An operation op is an idempotent operation iff
op ◦ op(s) = op(s) for every state s. ✷

Clearly, even if the slower replica ojk′ omits
identity and idempotent operations, ojk′ can
get the same state as the faster replica ojk.
[Omission rule]
If all the following conditions are satisfied, an
operation op in the waiting request stored in
APQjk′ is omitted by a replica ojk′ :
1. ojk′ is a slower replica.
2. op is an identity or idempotent operation.
3. Some faster replica ojk has performed op.

✷

In the papers of Refs. 8) and 14), by using vector
clocks10) for determining the causal relationship
among the messages, the omission rules 1 and
3 are checked in each replica ojk (1 ≤ k ≤ nj).
Here, every request message is assumed to be
transmitted to all the replicas in the same order,
i.e., totally ordered delivery is assumed.
Requests not being omitted by the omission

rule are performed in the same order in every
replicas. However, some pair of operations op
and op′ can be performed in different orders.
[Definition: compatible and conflict op-
erations]
Operations op and op′ are compatible iff op ◦
op′(s) = op′ ◦ op(s) for every state s. Other-
wise, these operations are conflict. ✷

If op and op′ are compatible, these operations
can be performed in different order in each
replica.
By computing the operations in different or-

der in each replica, the response time in client
objects may be reduced (Fig. 5). If an op-
eration op requested by ci and another oper-
ation op′ requested by ci′ are compatible, op
and op′ are required to be computed first by
the replica near ci and ci′ , respectively. That
is, the message transmission delay between a
client objects and the replicas is reasonable for
deciding the computation order of compatible
operations. The message transmission delay is
not constant but time-variant15). Therefore, it
is required to be measured each time an oper-

Vol. 41 No. 2 Pseudo-active Replication in Wide-area Network 205

oj1 oj2ci

r r’

ci’

r
r

r’

r’

oj1 oj2ci

r r’

ci’

r

r

r’
r’

Total Order Changed Order

Fig. 5 Intentional computing order exchange.

ojk ojk’ci

(cl ,lo)jk jk

(cl ,lo)jk’ jk’

(cl, lo)max max

req

ord

fin

Fig. 6 Total ordering protocol for pseudo-active
replication.

ation is requested. In our protocol proposed in
the following section, the delay is measured in
the first and the second phases of total order-
ing protocol. Finally, in order to avoid that the
computation of some compatible operations is
postponed infinitely, the order for some request
to be performed is maximally exchanged with
another one in a predetermined Emax times.
That is, if an operation op is exchanged in Emax

times, op becomes a conflict operation with ev-
ery other request.

3. Protocol

In this section, we propose another protocol
for implementing the pseudo-active replication
by using the total ordering protocol3). Each
replica ojk (1 ≤ k ≤ nj) of a server oj manipu-
lates the following variables:
• Logical clock cljk for totally ordering the
requests from client objects.

• Index loijk of a lastly computed request for
the metric of processing speed of a replica
ojk.

In the following total ordering protocol, the
above variables are piggied back with the con-
trol messages in order to exchange the length
of the waiting request queue among the repli-
cas (Fig. 6):
[Total ordering protocol]
1. A client object ci sends request messages

req(r) with a request r to all the replicas
ojk (1 ≤ k ≤ nj).

2. On receipt of req(r), the replica ojk

stores the request r in the buffer with
cljk. ojk sends back an ordering message
ord(cljk, loijk) piggying back cljk and loijk.
cljk is incremented by one.

3. After receiving all the ordering messages
from the replicas, ci sends final messages
fin(max cl,max loi, ord) where max cl =
maxk cljk, max loi = maxk cljk and ord is
the receipt order of the ordering message
from ojk.

4. On receipt of fin(max cl,max loi, ord), r
is restored from the buffer and enqueued to
APQ ordered by oi(r) = max cl. ✷

APQ is an FIFO request queue and the appli-
cation dequeues requests from APQ. If the ap-
plication finishes the computation of a request
r with oi(r), loijk is updated to oi(r). Hence,
loijk is always incremented. max loi piggied
back to the final message means that the fastest
server object has finished to compute a request
with max loi. Hence, the procedure for omit-
ting requests is invoked as follows:
[Omitting operations]
• If max loi− loijk > threshold , identity and
idempotent operations in APQ is removed.

✷

Finally, if a request r and another request
r′ in APQ are compatible, r is enqueued into
APQ according to the following procedure:
[Intentional order exchange procedure]
1. If r and r′ are compatible and ord(r) <

ord(r′), r is enqueued before r′.
2. If r and r′ are compatible and ord(r) =

ord(r′), r is enqueued before r′ with prob-
ability 1/2.

3. Otherwise, r is enqueued after r′. ✷

4. Evaluation

4.1 Evaluation Metrics
We evaluate our protocol described in by

comparing with the protocol in Ref. 2). Here,
we measure the following:
• Number of request messages in APQ.
• Differences among numbers of request
messages in APQ.

• Processing time for our protocol.
We assume that there are two replicas os

j1

and os
j2 of a server os

j . Request messages from
clients are assumed to be performed accord-
ing to our protocol and queued into application
message queues APQj1 and APQj2 by os

j1 and

206 Transactions of Information Processing Society of Japan Feb. 2000

Table 1 Machine architectures.

Host Machine CPU Memory
H1 Sun Enterprise 450 300 MHz × 2 512MB
H2 Sun Ultra5 167 MHz × 2 256MB

os
j2, respectively. The request messages are de-
queued from the APQ sequentially. The fewer
messages are waiting in APQjs, the less mem-
ory the protocol uses. In our evaluation, the
numbers of messages in APQ of the faster repli-
cas in both protocols are equal. Hence, we mea-
sure the number Aqj of messages in APQ of the
slower replica for the evaluation.
As discussed in Section 2, if a faster replica

os
j1 fails, one of the slower replicas os

j2 takes
over after catching up with os

j1. Thus, recovery
time is determined by the difference qdj of the
numbers of request messages queued in APQj1

and APQj2, i.e., qdj = |APQj1−APQj2|. The
smaller qdj is, the shorter the recovery time is
required in case of a failure.
Finally, we measure the processing time for

the protocol, i.e., the protocol overhead. This
protocol overhead includes the time required for
totally ordering the request messages, recogni-
tion of processing speeds of the computers on
which the replicas are located, searching APQ
for detecting omissible request messages, and
removing omissible messages from APQ. In
a faster replica, there is no difference between
the processing times of our protocol and con-
ventional one. Here, we measure the protocol
processing time CUj in a slower replica for our
evaluation. The shorter CUj is, the less CPU
usage is required for protocol processing.
As stated above, we evaluate the following

three items.
• Recovery time
• Memory usage
• CPU usage
4.2 Assumptions
We evaluate the performance of the proposed

protocol under the following assumptions:
• There are two multiprocessor computers

H1 and H2 interconnected by 100Mbps
Ethernet (Table 1).

• There are two replicas os
j1 and os

j2 of
a server object os

jk and 20 client objects
which request two kinds of operations op1

and op2. These objects are located as
shown in Table 2.

In order to simulate various kinds of wide-
area network environments, we use the follow-
ing four parameters as shown in Fig. 7: Tc [sec],

Table 2 Objects allocation.

Host server client
H1 os

j1 10 clients

H2 os
j1 10 clients

oji
c

Tc

os

Tw

ji ji
c s

j1
s
j2

T

Td

d

j1

j2

o o o

Fig. 7 parameters.

Table 3 Parameter values of Tc and P1.

Tc [sec] 0.00, 2.00, 4.00, 6.00, 8.00, 10.00
P1 [%] 0, 25, 50, 75, 100

Twjk
[sec], Tdjk

[sec], P1 [%]. A parameter Tc

denotes the interval between receipt of a re-
sponse message and transmission of the next
request message in a client object. Here, all
requests are invoked synchronously, i.e., if a
client object oc

i invokes a request reqi
l , the next

request reqi
l+1 is never invoked before receiv-

ing a response of reqi
l . In our evaluation, each

client object oc
i issues 4 requests. Thus, each

replica os
jk computes 80 requests. Twjk

denotes
the processing time for one requested operation
in a replica os

jk. Twj1 and Twj2 are assumed to
be 1.03 [sec] and 14.78 [sec], respectively. Tdjk

denotes the message transmission delay in the
network. In our evaluation, we assume five
clients are located near os

j1 and the other five
client objects are located near os

j2. The message
transmission delay for near and far replicas are
assumed to be 0.06 [sec] and 0.30 [sec], respec-
tively. Each client object requests operations
op1 and op2 with probabilities P1 and P2 (P1

+ P2 = 100 [%]). Finally, a conflicting relation
among the operations is defined as follows:
• op1 and op1 are conflict.
• op2 and op2 are compatible.
• op1 and op2 are conflict.

For example, op1 and op2 are write and read
operations for an integer object. In the follow-
ing subsection, we will show our evaluation re-
sult. Here, only Tc and P1 are changed as shown
in Table 3.

4.3 Evaluation Result
This subsection describes the evaluation re-

sults under the environment discussed in Sec-
tion 4.1. First, we measure the change of qdj .

Vol. 41 No. 2 Pseudo-active Replication in Wide-area Network 207

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

time [sec]

Our protocol

Conventional protocol

qd
j

Fig. 8 qdj (Tc =8.00 and P1=25).

In Fig. 8, a solid line and a dotted one represent
differences of numbers of messages in APQs,
i.e., qdj , in our protocol and a conventional one,
where Tc = 8.00 [sec] and P1 = 25 [%]. Here, qdj

in our protocol is always smaller than in a con-
ventional one. This means that the proposed
protocol implies shorter recovery time in case
of a failure of a faster replica. In addition, the
first time when a catch up procedure is invoked
is 18 [sec] in the protocol and 30 [sec] in con-
ventional one, even though the same threshold
value is used in these protocols. This is because
the protocol can detect slower replicas by using
every request message and a conventional one
can only detect them by using causally related
messages. That is, there are more chances to
detect them in the protocol.
Next, we measure averages of qdj where Tc

and P1 are changed as shown in Table 3. In
Fig. 9, a solid line and a dotted one represent
average differences of numbers of messages in
APQs, i.e., qdj , in our protocol and a conven-
tional one. In every evaluation environment,
qdj in our protocol is smaller than in a con-
ventional one. That is, less recovery time is
required in our protocol. Moreover, consider
the case where P1 = 0 [%] (P2=100 [%]). Here,
all the requested operations are op2. That is,
all the queued requests in APQ of the slower
replica are omitted in both protocols. There-
fore, the result shows there are more chances to
detect slower replicas in our protocol.

Figure 10 shows the measurement result of
the number Aqj of waiting messages in APQjk

in a slower replica os
jk. Aqjk in our proto-

col is much smaller than a conventional proto-
col except for the two parameter values Tc =
0.00 [sec], P1 = 25 [%] and Tc = 2.00 [sec],
P1 = 25 [%]. The waiting request messages

0
25

8
4

10

50

100

0
1
2
3
4
5
6
7
8
9

10
11

2

6

75

our protocol
conventionl protocol

P1 [%]

Tc [sec]

qd
j

Fig. 9 Average recovery overhead (dqj).

 [%]

0

10 0

50

100
1

2

3

4
5

6

7

8

9

10

[sec]

our protocol
conventional protocol

Tc

P1

A
q

j

2
4

8
6

25

75

Fig. 10 The average overhead (Aqj).

queued in APQjk are stored in the memory.
Hence, the amount of memory used for thses
messages are proportional to the number of
messages in APQjk, i.e., Aqjk. Since Aqjk in
the proposed protocol is much less than that
in a conventional one, much less memory is re-
duced by using the proposed protocol.
Finally, we measure the protocol processing

time CUj in a slower replica of a server ob-
ject os

j . CUj includes the time for detecting a
slower replica, searching and removing omissi-
ble messages from an APQ. Table 4 shows the
result of the measurement for 80 requests com-
paring with the conventional protocol. Here,
our protocol is realized with almost the same
processing time i.e., the same CPU usage, as
the conventional one. In our protocol, there
are more chances for detecting slower repli-
cas. Thus, the procedure for searching omis-
sible messages from the APQ is invoked more
frequently. However, as shown before, the APQ
in our protocol is shorter. Therefore, the addi-
tional CPU usage is sufficiently reduced.

208 Transactions of Information Processing Society of Japan Feb. 2000

Table 4 CPU usage (CUj [sec]).

avg max min
ours 2.97 3.38 2.70

conventional 2.90 3.28 2.60

5. Concluding Remarks

In order to apply the pseudo-active replica-
tion in a wide-area and large-scale network sys-
tems, we proposed another protocol designed
by modifying the total ordering protocol. In
order to make clear the efficiency of our pro-
tocol, we have implement our protocol in a
prototype system simulating a wide-area net-
work and shown that our protocol realizes the
pseudo-active replication with less overhead. In
future, we will evaluate our protocol in the In-
ternet environment.

References

1) Ahamad, M., Dasgupta, P., LeBlanc R. and
Wilkes, C.: Fault Tolerant Computing in Ob-
ject Based Distributed Operating Systems,
Proc. 6th IEEE Symposium on Reliable Dis-
tributed Systems, pp.115–125 (1987).

2) Barrett, P.A., Hilborne, A.M., Bond, P.G. and
Seaton, D.T.: The Delta-4 Extra Performance
Architecture, Proc. 20th International Sympo-
sium on Fault-Tolerant Computing Systems,
pp.481–488 (1990).

3) Birman, K.P. and Joseph, T.A.: Reliable
Communication in the Presence of Failures,
ACM Trans. Computer Systems, Vol.5, No.1,
pp.47–76 (1987).

4) Borg, A., Baumbach, J. and Glazer, S.: A Mes-
sage System Supporting Fault Tolerance, Proc.
9th ACM Symposium on OS Principles, pp.27–
39 (1983).

5) Cooper, E.C.: Reliable Distributed Programs,
Proc. 10th ACM Symposium on OS Principles,
pp.63–78 (1985).

6) Higaki, H. and Soneoka, T.: Group-to-Group
Communications for Fault-Tolerance in Dis-
tributed Systems, IEICE Trans. Information
and Systems, Vol.E76-D, No.11, pp.1348–1357
(1993).

7) Higaki, H., Morishita, N. and Takizawa, M.:
Active Replication in Wide-Area Networks,
IPSJ Technical Report, Vol.98, No.84, pp.93–
98 (1998).

8) Ishida, T., Higaki, H. and Takizawa, M.:
Pseudo-Active Replication of Objects in Het-
erogeneous Processors, IPSJ Technical Report,
Vol.98, No.15, pp.67–72 (1998).

9) Lamport, L.: Time, Clocks, and the Order-
ing of Events in a Distributed System, Comm.

ACM, Vol.21, No.7, pp.558–565 (1978).
10) Mattern, F.: Virtual Time and Global

States of Distributed Systems, Parallel and
Distributed Algorithms, pp.215–226, North-
Holland (1989).

11) Powell, D., Chereque, M. and Drackley,
D.: Fault-Tolerance in Delta-4, ACM Operat-
ing System Review, Vol.25, No.2, pp.122–125
(1991).

12) Schneider, F.: Byzantine Generals in Ac-
tion: Implementing Fail-Stop Processors,
ACM Trans. Computing Systems, Vol.2, No.2,
pp.145–154 (1984).

13) Shima, K., Higaki, H. and Takizawa, M.:
Fault-Tolerant Intra-Group Communication,
IPSJ Trans., Vol.37, No.5, pp.883–890 (1996).

14) Shima, K., Higaki, H. and Takizawa, M.:
Pseudo-Active Replication in Heterogeneous
Clusters, IPSJ Trans., Vol.39, No.2, pp.379–
387 (1998).

15) Tachikawa, T., Higaki, H., Takizawa, M., Liu,
M., Gerla, M. and Deen, M.: Flexible Wide-
area Group Communication Protocols – Inter-
national Experiments, Proc. 27th International
Conference on Parallel Processing, pp.570–577
(1998).

(Received May 11, 1999)
(Accepted October 7, 1999)

Hiroaki Higaki was born in
1967. He received his B.E. de-
gree from the Department of
Mathematical Engineering and
Information Physics, the Uni-
versity of Tokyo in 1990. From
1990 to 1996, he was in NTT

(Nippon Telegraph and Telephone Corpora-
tion) Software Laboratories. Since 1996, he
is in the Department of Computers and Sys-
tems Engineering, Tokyo Denki University. He
received his D.E. degree from the Department
of Computers and Systems Engineering, Tokyo
Denki University in 1997. His research inter-
ests include distributed systems, distributed al-
gorithms, distributed operating systems, fault-
tolerant systems and computer network proto-
cols. He received IPSJ Convention Award and
IPSJ SIG Research Award in 1995 and 1997,
respectively. He is a member of ACM, IEEE
CS, IPSJ and IEICE.

Vol. 41 No. 2 Pseudo-active Replication in Wide-area Network 209

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degrees in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is an
assistant in the Department of Computers and
Systems Engineering, Tokyo Denki University.
His research interests include distributed sys-
tems, transaction management, recovery proto-
cols, and computer network protocols.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku University,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. de-
gree in Computer Science from

Tohoku University in 1983. From 1975 to 1986,
he worked for Japan Information Processing
Developing Center (JIPDEC) supported by the
MITI. He is currently a Professor of the De-
partment of Computers and Systems Engineer-
ing, Tokyo Denki University since 1986. From
1989 to 1990, he was a visiting professor of
the GMD-IPSI, Germany. He is also a regu-
lar visiting professor of Keele University, Eng-
land since 1990. He was a vice-chair of IEEE
ICDCS, 1994, and is serving as a program co-
chair of IEEE ICDCS, 1998 and serves on the
program committees of many international con-
ferences. His research interests include commu-
nication protocols, group communication, dis-
tributed database systems, transaction man-
agement, and groupware. He is a member of
IEEE, ACM, IPSJ, and IEICE.

