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Introducing Feature Values for Effective Specification of

Polyhedral Networks
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The recursive subdivision of polyhedral networks, often called polyhedral subdivision, has
become one of the basic tools in Computer Aided Geometric Design (CAGD) for modeling
complex surfaces since the first two methods were proposed by Catmull and Clark (1978) and
Doo and Sabin (1978). Unfortunately, it is still inconvenient to use polyhedral subdivision
to generate surfaces which are the same as or close to the surfaces designers want to achieve
over simple and rough polyhedral networks. The efficient and easy way of achieving this is to
define precision polyhedral networks. However, it is obviously very troublesome for users to
generate precise, complex polyhedral networks. In order to solve this problem, the concept
of feature values for vertices, edges, and faces of a polyhedron is introduced in this paper,
and the problem of making a subdivision process with the feature values of a polyhedron is
studied. With these feature values, a polyhedron will be divided once before using a polyhedral
subdivision method to generate surfaces. The newly generated polyhedrons can be controlled
and modified easily by adjusting the feature values. This paper proposes an efficient way to
create polyhedral networks for modeling complex surfaces.

1. Introduction

1.1 Background
As the polyhedral subdivision process pro-

vides a simple way to generate surfaces over
polyhedral networks or irregular topologies, it
is widely used in CAGD for modeling com-
plex surfaces. The fundamental idea goes back
to Chaikin’s algorithm 1) which generates a
quadratic B-spline curve from a polygon by suc-
cessively cutting its corners. In 1978, the first
two polyhedral subdivision methods were intro-
duced by Catmull and Clark 2), and Doo and
Sabin 3). They applied Chaikin’s idea to the
generation of surfaces. In these methods, an ini-
tial polyhedral network is successively modified
on its edges and corners. In the limit, a surface,
often called the subdivision surface, can be gen-
erated over the polyhedral network. Because
no global parameterization is possible in general
in these surfaces 10), these polyhedral subdivi-
sion methods arouse the interest of researchers.
Many approaches have been attempted to fol-
low or extend the polyhedral subdivision meth-
ods. Nasri extended the Doo-Sabin method
to generate a surface which interpolates some
or all vertices of a polyhedron 4),6), and inter-
polates the vertices with normal conditions 5).
Moreover, he proposed an algorithm to generate
subdivision surfaces which interpolate B-spline
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curves 7). Peters 13) extended the subdivision
technology to generate surfaces by separating
singular regions after a few subdivision steps.
Halstead, et al. 14) proposed an interpolation
method using Catmull-Clark surfaces. More de-
tailed discussions on subdivision surfaces can be
found in Ref. 4)–9), 11)–15).

1.2 Motivation
In the polyhedral subdivision method, the

initial polyhedral network decides the final
shapes of surfaces. Thus, to model a complex
surface, a complex or precise polyhedral net-
work must be defined. Figure 1 illustrates
the derivation of a subdivision surface with a
sharp corner and a distorted area from a sim-
ple cube (Fig. 1 (a)). In the Doo-Sabin subdi-
vision method, another polyhedron, illustrated
in Fig. 1 (b), must be defined, then the shape
shown in Fig. 1 (c) can be obtained. Generally,
a 3D model can be input by a 3D input de-
vice or created with an interactive editor inter-
face. The designer usually uses 3D input de-
vices, for example a 3D laser scanner, to gener-
ate 3D data of a shape from an physical model.
Using polyhedral meshes to reconstruct shapes
from the input data is a primitive way. But
the number of polyhedral meshes is too huge
to manipulate. On the other hand, in many
cases, physical models are unavailable and de-
signers must create them by hand. In this case,
a basic method is using surface patches to rep-
resent surfaces, but it is very expensive to deal
with complex surfaces. A polyhedral subdivi-
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(a) (b) (c)
Fig. 1 Generating a surface with a sharp corner and a

distorted area from a cube. (a) A cube. (b) The
cube and a new polyhedron. (c) The cube and
the shape generated from the new polyhedron
in (b).

sion method is a good choice. However, in the
subdivision method, it is difficult to predict the
final shape from the original polyhedral net-
works precisely, and generating complex poly-
hedral networks is difficult work for designers.
Although simple polyhedra can be generated
easily, it is difficult to develop surfaces from
simple and rough polyhedral networks that are
the same as, or close to, the surfaces designers
wish to model.

Many approaches to the subdivision of sur-
faces have previously been proposed. Some
interpolation methods were proposed by
Nasri 4),6),7), Halstead, et al. 14) and Dyn, et
al. 12). A set of local shape handling meth-
ods for controlling the quality of the final shape
was proposed by Brunet 9). However, basically
these methods focused on how to control and
modify surfaces generated from a polygon that
had already been selected, and did not solve the
problem of how to model a complex polyhedral
network efficiently for controlling and generat-
ing subdivision surfaces. To solve this problem,
the concept of feature values for vertices, edges,
and faces of a polyhedron is introduced in this
paper.

The feature values can be considered as pa-
rameters of a polyhedron. With these feature
values, a simple and rough polyhedron is di-
vided once before using the subdivision method,
then a complex and precise polyhedral network
can be derived easily. Designers can control
the shape of new generated polyhedral networks
easily by giving and adjusting feature values
and a complex and precise polyhedral network
with some shape features can be developed eas-
ily from a simple and rough polyhedral network.
For example, in Fig. 1, we can generate a new
complex polyhedron Fig. 1 (b) easily by assign-
ing feature values to the vertices and edges of
the cube. Then, the final shape generated by

the Doo-Sabin method in Fig. 1 (c) can easily be
obtained. In this paper, we use the Doo-Sabin
subdivision method to generate surfaces. Users
can extend our method and use other subdivi-
sion approaches to model final shapes.

As our approach is based on Doo-Sabin sub-
division surfaces and the Nasri interpolation
method, they will both be described in detail in
the following section. In Section 3, we introduce
the definition of feature values and the subdivi-
sion process using the feature values. Section 4
presents three examples to illustrate the effect
of subdivision with feature values. Finally, we
come to conclusions and propose future work.

2. Doo-Sabin Subdivision Surfaces and
the Nasri Interpolation Method

In the Doo-Sabin method, surfaces are gener-
ated from polyhedral networks by successively
cutting the corners and edges of the polyhe-
dron. The Doo-Sabin algorithm can be de-
scribed as follows and is illustrated in Fig. 2.
Some terms proposed by Nasri 4) are used here-
under:
( 1 ) For every vertex Vi of the polyhedron Pi,

a new vertex V ′
i , called an image, is gen-

erated on each face adjacent to Vi.
( 2 ) For each face Fi of Pi, a new face, called

an F-face, is made by connecting the im-
ages, the vertices V ′

i generated in Step 1.
( 3 ) For each edge Ei common to two faces Fi

and F ′
i , a new four-sided face, called an

E-face, is made by connecting the images
of the end vertices of Ei on the faces Fi

and F ′
i .

( 4 ) For each vertex Vi, where n faces meet,
a new face, called a V-face, is made by
connecting the images of Vi on the faces
meeting at Vi.

The image vertices V ′
i generated in Step 1 are

functions only of the vertices of Pi. That is:

V ′
i =

n∑

j=1

aijVj

where Vj are the vertices of the old faces, V ′
i is

the new vertex of Vj , and aij are weights.

aij =
n + 5

4n
for i = j,

aij =
3 + 2 cos(2π( i−j

n ))
4n

for i �= j.

Figure 2 (a) illustrates the F-face, E-face, and
V-face of the Doo-Sabin subdivision method. A
face of a polyhedron is enclosed in solid nodes
and the generated F-face, E-face and V-face are
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Fig. 2 The Doo-Sabin subdivision method. (a) Three
types of faces. (b) A cube. (c) The cube and
its first subdivision. (d) The cube and its sec-
ond subdivision. (e) The cube and its fourth
subdivision.

enclosed in hollow nodes. Figure 2 (b)–(e) il-
lustrate a cube and the Doo-Sabin subdivision
process over it.

Nasri 4),6) extended the Doo-Sabin method by
generating a surface which interpolates some or
all vertices of a polyhedron. Figure 3 illus-
trates an interpolation procedure. In Nasri’s
approach, a new polyhedron with a set of ver-
tices W = (Wi)1≤i≤n, having the same topol-
ogy as the set V = (Vi)1≤i≤n for the edges and
the faces of the initial polyhedron, is first ob-
tained. There is a one-to-one mapping between
the vertices of the sets V and W , such that Wk

corresponds to Vk. Furthermore, the new poly-
hedron is such that each flagged vertex in V is
the centroid of the V-face generated from its
corresponding vertex in W . There is a simple
linear relation between a Vi and the elements of
the set W :

Vi =
1
m

m∑

k=1

Wik

(a) (b)

(d)

V1
V2

V3
V4

V5V6

V7
V8

W1W2

W3 W4

W5W6

W7 W8
V1

(c)

W11

W12
W13V1

V2

Fig. 3 Interpolation of two points of a cube using
Nasri’s method. (a) A cube. (b) The cube
and the new polyhedron (constructed by linking
W1, W2, . . . , W8) for interpolating two points.
(c) The cube and its first subdivision and the
images (W11, W12, W13) corresponding to V1.
(d) The cube and its fourth subdivision.

where m is the number of faces meeting Wi (or
Vi) and Wik are the vertices of the V-face gen-
erated from Wi by the Doo-Sabin subdivision
process. Thus, we can generate a subdivision
face that interpolates some vertices of the ini-
tial polyhedron.

3. Subdividing Polyhedra Using Fea-
ture Values

3.1 The Definition of Feature Values
A polyhedron is composed of faces, edges,

and vertices, so feature values are also defined
for faces, edges, and vertices of a polyhedron.
Whether to keep a face of a polyhedron as a
plane in the subdivision process is defined as
a face feature value, or FFV. If the FFV of a
face is equal to 0, this means the face will be a
plane and is called a plane face. If the FFV of
a face is equal to 1, this means the face will be
processed into a surface and is called a surface
face.

The round extent along an edge of a polyhe-
dron is defined as an edge feature value, or EFV.
Each edge has different EFV s for the faces the
edge is common to.

The sharp degree of a vertex of a polyhedron
is defined as a vertex feature value, or VFV.
Each vertex has different VFV s for the faces
the vertex is common to.

With these feature values, a polyhedron is di-
vided into a new polyhedron, and then the Doo-
Sabin subdivision process is carried out over the
new polyhedron. Figure 4 illustrates a polyhe-
dron and a generated surface with some feature



Vol. 41 No. 3 Introducing Feature Values for Effective Specification of Polyhedral Networks 745

Sharp edge

Sharp vertex

Plane face

Fig. 4 A polyhedron and a generated surface with
some feature values.

values.
3.2 The Subdivision Process with Fea-

ture Values
The subdivision process with feature values

is carried out in different ways according to the
type (surface face or plane face) of a face of a
polyhedron.

3.2.1 Surface Face
When a face’s FFV is equal to 1, this means

the face is a surface face. The subdivision pro-
cess is shown in Fig. 5 and described as follows:

( 1 ) For each n-sided surface face Si, let the
point Ci be the centroid of Si.

( 2 ) For each edge Ei of Si, let E′
i be a line

parallel to Ei, and let EFVi, the feature value of
the edge Ei on Si, be the ratio of the distance
between edge Ei and line E′

i to the distance
between edge Ei and point Ci. Obviously, the
value of EFVi on Si is a real number between
0.0 and 1.0 and the round extent on an edge
will become larger as the EFV becomes larger.

( 3 ) For each face Si, let Vi (the hollow tri-
angle nodes in Fig. 5) be the cross point of two
contiguous lines generated in Step 2 (in Fig. 5,
corresponding to Vi, the two lines are E′

i and
E′

i+4). According to Vi and the correspond-
ing vertex Vi of Si, let V ′

i (the hollow circle
nodes in Fig. 5) divide the line segment Vi, Vi,
and the ratio of the distance between Vi and
V ′

i to the distance between Vi and Vi is defined
as V FVi, the feature value of vertex Vi on the
face Si. Obviously, the value of V FVi is a real
number between 0.0 and 1.0 and a vertex will
become sharper as the EFV becomes smaller.
The new vertex V ′

i is called an image vertex,
as in the Doo-Sabin method. An F-face can be
constructed by linking all image vertices (hol-
low circle nodes in Fig. 5) of Si.

( 4 ) If there are no plane faces defined in
the polyhedron, we go to the next step. If there
are plane faces defined in the polyhedron, we
make a subdivision process on plane faces.

( 5 ) The procedures for generating new E-

a b
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d
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Ei

Ei

EFVi=a/b
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Fig. 5 The subdivision process with feature values on
a surface face and its three types of faces en-
closed in hollow circle nodes.

faces from each edge and V-faces from each ver-
tex are similar to the processes of the Doo-Sabin
method.

3.2.2 Plane Face
When the FFV of a face is 0, the face is

treated as a plane face. The subdivision pro-
cess will be carried out after finding all F-faces
of surface faces. The image vertices (hollow cir-
cle nodes in Fig. 5) on surface faces surrounding
a plane face will be used to construct an F-face
of a plane face. The EFV s and V FV s on the
plane face are ineffective. The generated F-face
will be treated as a plane. The subdivision pro-
cess is shown in Fig. 6 and described as follows:

( 1 ) For each edge Ei of a plane face Pi, test
the FFV of the other face sharing the edge Ei

with face Pi. If the FFV is 1, this means the
face is a surface face, flagged in Si. Suppose V ′

i

and V ′
i+1 (hollow nodes in Fig. 6 (a)) are the im-

age vertices of the end of Ei on the face Si, and
let Vsi and Vei be the feet of the perpendiculars
from V ′

i and V ′
i+1 to the edge Ei, respectively.

If the FFV of another face sharing the edge
Ei is 0, this means the face is a plane face.
The end points of the edge Ei will be taken
as Vsi and Vei, respectively (see edge Ei+1 in
Fig. 6 (a)). All vertices Vsi and Vei correspond-
ing to each edge of Pi are referred to as image
vertices (solid square nodes in Fig. 6 (a)) of the
plane face.

( 2 ) For each face Pi, linking the image ver-
tices (solid square nodes in Fig. 6 (a)) to re-
place the vertices Vi, Vi+1, . . . , Vi+m (solid circle
nodes in Fig. 6 (a)) of Pi, we construct an F-face
P ′

i of Pi.
( 3 ) For F-face P ′

i of Pi, there are several
ways to ensure it remains a plane during the
subdivision process. One method is to dou-
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ble the topology data of P ′
i . However, when

two plane faces are connected, a correct result
cannot be reached. Here, we use the interpola-
tion method proposed by Nasri 4),6). All E-faces
and V-faces surfaces connected with P ′

i will be
treated as open polygons.

To interpolate all edges of P ′
i , we construct

a new F-face P ′′
i with a set of vertices V ′

si, V ′
ei

(hollow triangle nodes in Fig. 6 (b)) as the re-
flection of the set of V ′

i , V ′
i+1 (hollow circle

nodes in Fig. 6 (b)) about each edge Vsi, Vei

(solid square nodes in Fig. 6 (b)) of P ′
i , respec-

tively. The special case is the generation of new

Vi+4

Vi Vi+1

Vi+2Vi+3

Vi+1Vi

Vsi Vei

Plane 
face Pi

Surface 
  face

Surface 
  face

Surface 
face Si

Surface 
  face

F-face Pi

E-faceV-face

Plane 
 face

(a)

Ei

Ei+1

P1

P2 P3

P4

C

Corner Vertex

(b)

Corner
vertex

Vsi
Vei

Vi
Vi+1

Vsi
Vei

F-face Pi

(c) (d) (e)
Fig. 6 The subdivision process using feature values on

a plane face. (a) A plane face and its F-face,
E-face, and V-face. (b) Reconstruction of three
types of faces for interpolating all edges of the
old F-face P ′

i generated in (a). The result is
a new F-face P ′′

i (linked by triangle nodes).
(c) The first Doo-Sabin subdivision over the re-
constructed polyhedron. (d) The second Doo-
Sabin subdivision process. (e) The fourth Doo-
Sabin subdivision process.

end vertices of the edge that two plane faces
share. The vertex is called a corner vertex.
Referring to Fig. 6 (b), two corner vertices are
flagged as solid triangle nodes. Because the ver-
tex C, the vertex of the original polyhedron, is
the centroid of the polygon linked by p1, p2, p3,
and p4, and we know the values of p1, p2, p3,
and C, the corner vertex can be obtained by:

p4 = 4C − p1 − p2 − p3.
More detailed discussion of this interpolation
method can be found in Nasri’s paper 4),6). The
new F-face P ′′

i can be obtained by linking all
triangle nodes in Fig. 6 (b).

After constructing the new F-face P ′′
i of Pi,

we go to step 5 in Section 3.2.1 to compute the
E-faces and V-faces.

3.2.3 The Special Case of Subdividing
a Polyhedron with Feature Val-
ues

In some cases, we will get a wrong sequence
of vertices in the subdivision process. For ex-
ample, in Fig. 7, the face is a surface face and
is surrounded by surface faces. If the EFV1 and
EFV4 are near 1, and EFV5 is near 0, then we
will get an incorrect sequence of vertices V1, V2,
V3, V4, V5. To construct a correct type F-face,
we must modify the sequence by changing the
order of V4 and V5.

After finishing the subdivision process using
feature values, the Doo-Sabin subdivision pro-
cess will be carried out recursively on surface
faces and on the edges of plane faces. The faces
surrounding plane faces will be taken as open
polygons. Figure 6 (c) illustrates the first Doo-
Sabin subdivision process over the new polyhe-
dron generated in Fig. 6 (b). Figure 6 (d) shows
the second Doo-Sabin subdivision process. Fig-
ure 6 (e) shows the fourth Doo-Sabin subdivi-
sion process. It is clear that the two plane
faces are getting closer to the faces of the origi-
nal polyhedron with each step of the Doo-Sabin

V2 V3

V4V5

V1

V1
V2

V3

V5

V4 E3

E4

E1

E5

E2

E2

E3

E4E5

E1

C

Surface face

Surface face

Surface face

Surface face

Surface face

Fig. 7 Special case of the subdivision process using
feature values.
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subdivision process. The edges of the plane face
are changed into biquadratic B-spline curves.

4. Examples

In this section, we take three examples. The
first example, illustrated in Fig. 8, shows the
effect of using different feature values in the
subdivision process.

The second example models a surface over a
club polyhedron. For comparison, Fig. 9 illus-
trates the procedure of the Doo-Sabin subdi-
vision process over a club-like polyhedron and
the final club shapes, and Fig. 10 illustrates the
subdivision process with feature values over the
same club polyhedron and the final club shapes.
Observing the club with a roundish surface in
Fig. 9 and the club in Fig. 10, the effect of sub-
dividing the polyhedral network with feature
values can clearly be seen. Figure 11 illus-
trates the same process as Fig. 10. It shows
that changing the FFV for just one face of the
club polyhedron, from 1 to 0, yields a club with
a plane face.

The third example, illustrated in Fig. 12,
simulates a tube under different distortion pres-
sures. Figure 12 (a) is the original polyhedron.
Figure 12 (e) is the Doo-Sabin surface after four
subdivision steps without assigning feature val-
ues. The other schemes are generated from the
initial polyhedron by setting and adjusting fea-

(a) (b)

(c) (d)

Fig. 8 A cube and surfaces generated using different
feature values. All FV Fs of the faces of the
cube are equal to 1 (surface faces). (a) All
EFV s on the faces of the cube are equal to 0.2,
all V FV s on the faces of the cube are equal to
1.0. (b) Changing all EFV s on the faces of the
cube to 0.4. (c) Changing all EFV s on the faces
of the cube to 0.6. (d) Changing V FV s for two
vertices on the faces that they are common to
from 1.0 to 0.05.

ture values on corresponding vertices and edges.
Obviously, the schemes generated with feature
values are closer to reality.

The above three examples were generated for
experiment. A simple interface was prepared
to allow designers to select, input, and edit fea-
ture values of a polyhedron directly. The FFV ,

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9 A club polyhedron and the subdivision process
using only the Doo-Sabin method. (a) A club
polyhedron. (b) The first Doo-Sabin subdivi-
sion over the club polyhedron. (c) The second
Doo-Sabin subdivision. (d) The fourth Doo-
Sabin subdivision. (e)–(g) The final shapes
from different viewpoints.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10 A club polyhedron and subdivision process
with feature values. (a) A club polyhedron.
(b) The subdivision process with feature val-
ues over the club polyhedron. (c) The first
Doo-Sabin subdivision over the polyhedron
generated in step (b). (d) The third Doo-
Sabin subdivision process. (e)–(g) The final
shapes from different viewpoints.
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(a) (b) (c)

Fig. 11 The final club shapes with a plane face.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Simulating a tube under different pressures.
(a) The original polyhedron. (b)–(d) are the
new polyhedra generated from the initial poly-
hedron in (a) with different feature values, re-
spectively. (e)–(h) are the final shapes of (a)–
(d), respectively.

EFV and V FV are defined in corresponding
model data structure tables. Though the inter-
face is very simple compared to creating these
polyhedra directly using normal edit and draw
functions, our method is still effective, as the
generation process is done automatically.

5. Conclusions and Future Work

In this paper, we introduced the concept of
feature values of a polyhedron for generating
polyhedral networks effectively. Generally, de-
signers can generate complex polyhedra using
normal drawing and edit functions, but if fea-
ture values are introduced, designers can use
parameters to control and model complex poly-
hedra from simple ones. It is clear that the in-
put process can be more effective and intuitive.
Moreover, though the process here is combined
with the Doo-Sabin subdivision method, it also

can be extended to other subdivision methods.
The concept of feature values is also useful and
helpful in CAGD systems, as creating and mod-
ifying polyhedra efficiently are basic require-
ments in these systems.

Of course, to introduce the technology pro-
posed here into a system, there are many prob-
lems to be solved. For example, we need to
study how to build the relationship of feature
values and input method, how to create the
data structure of a polyhedron and the interfer-
ence problems of polyhedral networks or subdi-
vision surfaces. Some basic problems of subdi-
vision methods were studied in Ref. 4). Finally,
we give our future work.

( 1 ) The most important question is how
to create an interactive interface that can allow
input and editing of feature values of a poly-
hedron directly. For example, if we want to
generate some graphs to simulate a tube un-
der different pressures. The interface will be
more friendly if we can build a suitable relation-
ship between feature values and simulated input
pressure. Then the final shape can be genetared
easily by changing the pressures (Fig. 12).

( 2 ) We need to be able to add a material
property parameter to the feature value of a
polyhedron, and set up a relationship between
material property feature values. We can then
generate complex shapes according to both the
geometric and material properties of a model.
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