TR 2 5546 In] CE IR 5 4F 100 2B k&

5—263

Information Exchange and Security in a Collaborative Development

5J—1

Support System for Object-Oriented Software

Manuel J. PECE MONTENEGRO, Ken’ichi KAKIZAKI and Seiichi UCHINAMI
Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology

1 Introduction

Although the object-oriented paradigm has well known ad-
vantages, the existence of inheritance, function overriding
and polymorphism can be an obstacle for an efficient soft-
ware development. Moreover, for large scale systems devel-
opment, the concept of collaborative development support
has emerged as an important issue. Nowadays it is common
for the participants in a development group to be working
in different host machines placed in physically distant lo-
cations, and hence the exchange of information needed for
cooperation becomes complicated. A support system that
eases the communication is needed [Oka91].

In this report we discuss information exchange and
security issues in a collaborative development support
system for object-oriented software.

2 Support System Overview

This section presents the design overview of our collabora-
tive development support system for object-oriented soft-
ware [Pec92]. We have chosen the C4++ as the object-
oriented language to be supported.

Object-Oriented Development Support
We want to offer to the developer all the information that
is relevant when developing object-oriented software. The
information is distributed among various class definitions.
The support system gathers this information and shows it
in a friendly way. A class browser is used as the user in-
terface. The whole class hierarchy graph is displayed in an
area of the browser, as indicated in fig 1.

Collaborative Development Support The devel-
opers need to exchange information regarding to what is
being done in the development group, without neither be-
ing aware of the network characteristics nor making any

Command Area

Class List M Member Function List Data Member List

Comment Area

Class Hierarchy Area

Figure 1: The class hierarchy displayed in the browser

ST HEE QBT

extra effort. The system also supports the construction of
a compilation environment by providing the most recent
versions of the files needed for a compilation, according
to predefined compilation dependencies. The version man-
agement follows the checkin/checkout model. For security
reasons, there is also an access control of source files to
regulate intersubgroup file access.

The support that we claim for is not omly for the
developers that are realizing the programming work, but
also for the project manager who is directing the process.

Documentation Support The need of producing an

- accurate technical documentation for testing, debugging,

extending and maintaining large scale systems becomes
even more important in object-oriented software develop-
ment, due to the high reusability. The system supports two
kinds of documentation: an interactive documentation in
the form of on line help and a hardcopy one.

3 Collaborative Development Support

3.1 Information exchange

With the widespread use of workstations and networks,
developers participating in a project can be working
in different host machines, placed in distant locations.
Because of this, the exchange of information among
the participants in a development group has become
very difficult. Furthermore, this information exchange is
even more important.in object-oriented projects than in
traditional programming, due to the inheritance capability
[Kom91]. .

We want the developer to be able to get information
about the classes that the other coparticipants are creating,
in the same way he gets information about his own classes.
The information must come from the most recent version
of the class definitions.

In order to understand the structure of the software
project as a whole, the user in a certain host machine au-
tomatically receives information from other host machines
through the network, in a client/server interaction. The
server analyzes the source files and extracts the relevant
information, which can then be exchanged independently
from the files. The client browser displays that informa-
tion about the whole system being developed, including
those classes defined by other developers and the common
classes that existed since the beginning of the project. For
the purpose of telling who is the developer of the class, the
system uses different shapes to represent the classes in the
hierarchy graph. This is shown in figs. 1. and 2.

Other developer |

Figure 2: Class developer representation

~ Common




5—264

The exchange of information we design consists not only
in receiving information about other developers’ classes,
but also in a participant communicating to the others what
he is going to do. There are few problems with the classes
that have been clearly defined and specified during the
analysis phase, but problems such as class name definition
as likely to happen with support classes added later, since
their definitions are not known by all the developers. When
a developer wants to use a certain class name or global
variable name, it is possible that before he completes the
definition, other developer has already used the same name
(i. e. duplication problem).

To solve this problem we propose a mechanism that
allows to declare in advance the class name or global
variable name, so that the use of already declared names
is forbidden by the system. That function is necessary
to maintain the project consistency, regarding not only to
class name problem of C++, but also traditional C problem
with global variables.

3.2 Security

Even in a collaborative environment, there can be occasions
in which the project is being developed by various different
organizations or subgroups (e.g. different sections within a
company or different companies working in collaboration)
where it is necessary to restrict the direct access to
the source files of a subgroup by a member of another
subgroup [Asa92). We think that the support system must
provide not only information exchange facilities, but also
the possibility for each subgroup to clearly precise if its
information is not to be offered, and then restrain the access
to that information.

In the project definition, all the subgroups participating
in the development are defined and then the access control
to the files of each one is set. There are three types of access
restriction : generally allowed, generally restrained and
absolutely restrained. For the first two, the file creator can
set a different restriction type for that file. The third one
can not be accessed by any outsider. Fig 3 illustrates the
different access restrictions among three subgroups. In the
Subgroup A, which is generally allowed, one file has been
set as not allowed. In the subgroup B, which is generally
restrained, one file has been set as allowed.

As a consequence of using this access control, informa-
tion that would be easy to understand by looking into the
source file is no more available, and hence some other kind
of information must be supplied. This task will be fulfilled
by the interactive documentation that we cite in the sup-
port system overview.

3.3 Compilation environment construction
Developing software does not consist only in writing source
programs. Tests of those programs and construction of
the system by integrating them are also necessary. To
do this, access to the information about other developers’
classes is not enough. It is necessary to compile and link
the programs, in which case various files, distributed in
different host machines, will be needed. The construction
of a compilation environment that brings together the
most recent versions of the files needed for the compilation
(header files, source files, libraries, object code, etc.)
according to predefined compilation dependencies, and
compile and link them is required.

In general, source files are provided for the compilation,
but when the source files are not accessible, due to

Subgroup A
generally allowed

,@ generally restrained
-2 / set:allowed - _%
A
1
i
1)

Subgroup B

Subgroup C
absolutely restrained

= == =" access not allowed
—* access allowed

Figure 3: Access control to source files

security reasons, object files are provided by the system.
This enables compilation without breaking the security
restrictions.

4 Conclusions

We have designed a support system for collaborative
developing of large scale object-oriented software. At the
present stage, the object-oriented development support and
documentation support functions have been implemented.

We present a support function that supplies the
developer with all the interface information about other
developers’ classes. Since this information can be handled
independently from the source files, the information
exchange can take place, even if the developer can not
directly access certain source files for security reasons. In
this way, information exchange does not compromise the
security.

Because the system provides all the relevant information
distributed among various class definitions, it enables
the utilization of all the object-oriented programming
paradigm potential.

References

[Asa92] Asami, H., Miyawaki, M., Tanaka, K. and
Fukuyama, S.: “A Security System for Dis-
tributed Software Enviroment”, SIG Notes DSP-

54-9, IPSJ (1992).

[Kom91] Komiya, S.: “Software Collaborated Design
Process Modelling and Its Intelligent -Support
Method”, SIG Notes SE-83-15, IPSJ (1991).
Okada, Y., lida, H., Inoue, K., Torii, K., Na-
gaoka, W., Umumoto, H. and Sakai, M.: “Process
and Communication Models for Distributed Soft-
ware Development”, SIG Notes SE-82-1, IPSJ
(1991).

Pece-Montenegro, M. J. and Kakizaki, K.:
“Requirement Analysis and Design of Object-

Oriented Development Support System for Group
Development”, SIG Notes SE-87-8, IPSJ (1992).

[Oka91]}

[Pec92]



