MR £ 4616 (i 5 TN ST A

TF—2
4 BEk

Finite-domain Constraint Programming in Beta-Prolog

RiR #

UM TEAE

1 Introduction

Introducing finite-domain constraint solving techuiques into
Prolog is one of the most important extensions of Prolog.
It enables the programmer to describe a variety of com-
binatorial problems declaratively and the system to solve
them cfficiently {3, 4). There are two main approaches to
introducing finite-domain constraint solving techniques into
Prolog. One is adopted in the CHIP system [3. 1], which ex-
tends the unification operation to handle domain variables
and the computation rule of Prolog to support coroutining.
The other approach is to implement finite-domain constraint
solver on top of Prolog [2]. Compared with the former ap-
proach, the latter is simple. It does not nced complicated
abstract machines and compilers, and generally do not cause
any overhiead to the Prolog system. However. it is not offi-
cient enough because Prolog does not provide cfficient data
structures for representing and handling domains, domain
variables, and constraints.

Beta-Prolog is an extended Prolog that provides the fol-
lowing two new facilities: (1) the definition and manipu-
lation of Boolean tables, and (2) constant time update of
the arguments of compound terms. In this paper. we de-
scribe an efficient finite-domain constraint solver on top of
Beta-Prolog. For a constraint satisfaction problem (CSP),
domains of variables are represented as a Boolean table, do-
main variables are represented as compound terns, and con-
straints are represented as calls in the form ¢(Constr). Due
to the new facilitics of Beta-Prolog, the system can solve
CSPs quite efficiently. For many benchmark programs, its
performance is comparable with that of the CHIP system.

2 Beta-Prolog

This section describes briefly the new facilities of Beta-
Prolog and their implementation.

Boolean Table

A Boolean table is a relation whose tuples arc associated
with a state of either true or false. A Boolean table or a
part of a Boolean table is declared as follows:

- bt(p(X). Xo. ..., Xn).S).

where p is the name of the table, each X;(1 <7 < n)is a set
expression, and S is cither true or false which denotes the
state of the tuples. This declaration says that the Cartesian
product X; x Xy x ... x X, is a part in the Boolean table
named p. A set expression is a variable, a list of atomic
terms, or a range between two integers.

*Neng-Fa ZHOU
fIsao NAGASAWA
Pyushu Institute of Techuology

The following primitives on Boolean tables are provided:

(1) sclect(p(+Xy...., +Xt, —Xig1s- .- —X2))
(2) next(p(+Xj..... +X,).—-Y)

(3) true(p(+X;.+Xo....,+X,))

(4) false(p(+X1,+X2,....+X4))

(5) set_true(p(+X;,+Xa2,....+X,))

(6) setfalse(p(+X;,+Xa,....4+X,))

(7) sot_falseO(p(+ X1, +Xa.. ... +X))

(8) count(p(+Xi,....+Xpy....-)N)

(9) max{p(+Xi,....+Xp, —Xp41))
(10)min(p(+Xy,....+Xp, =Xps1))

These primitives have respectively the following meanings:
(1) selects a true tuple from p, (2) gets the next true tuple
following a given true tuple. (3) and (4) test the state of a
given tuple, (5), (6) and (7) sct the state of a given tuple,
{8) counts the number of truc tuples in a block, (9) and (10)
select a true tuple whose & + 1th argument is respectively
the maximum and the minimun.

A Boolean table is organized in such a way that all the
primitives on it can be performed in constant time {5]. In or-
der to avoid causing any overhead to usual Prolog programs,
we introduced two new stacks into the TOAM [6].

Destructive Update

Besides the primitives on compound terms provided by Pro-
log, the following primitives are introduced:

(1) set.arg(+N,+T.+A)
(2) increment_arg(+N,+T)
(3) decrement_arg(+N,+T)

(1) sets the Nth argument of T to be A, (2) increments
the Nth argument of T by one, and (3) decrements the
Nth argument of T' by one. The updates arc undone upon
backtracking.

3 Specification and Interpretation of
Constraints

This section first describes how CSPs are specified and then
describes an interpreter for solving CSPs in Beta-Prolog.

Specification of CSPs

For a CSP, each variable is represented by a Prolog term in
the following. fornm::

dvar(ID,Value,Count,Cs),

where ID is the identifier (an atomic value) of the vari-
able, Value is a logical variable that will hold the value to



X7 Xg Xo X10
X4 X5 X
X2 X3
Xy

Figure 1: An arithmetic puzzle.

be assigned to the domain variable, Cs is the list of con-
straints related to the variable and Count is the number of
constraints in C's.

The domains of variables are represented by a binary
Boolean table named domain. For cach variable whose iden-
tifier is 1D and cach element E in its domain, there is a tuple
(ID,EY) in the table. Initially, all tuples are truc. The select
mode of domain is defaultly assumed to be domain(+,-).

Each constraint is represented as a call in the following
forn:

c¢(Expy R Euaps)

where Ezp; and Euap, are lincar expressions and R denotes
one of the following relation symbols: =, #, >. >, <, and
<.

Besides specifying the variables. domains, and con-
straints, the programmer also need to define a predicate
called labeling(Vars), which specifies the order in which vari-
ables arc processed. Before considering how counstraints are
handled, we give an example illustrating how CSPs are spec-
ified.

Example

Given ten variables as shown in Figure 1, we already know
that X is cqual to 3, we want to give cach variable a differ-
ent integer from {1,...,10} so that for any three variables in
the form

Xi X;
Xi

Xi—X; =X, or X; — X; = X
The programn shown in Figure 2 specifies the problem.
The predicate generate_puzzle(Vars) gencrates the domain
variables and the constraints on them. The predicate
write_values(Vars) writes the Value components of the vari-
ables in Vars. The predicate number_vars(Vars,N) translates
: the variables in.Vars into internal representation and num-
bers them with N, N + 1, and so on. The predicate. alldiffer-
ent(Vars) gencrates the constraints that all variables in Vars
will get different values. The predicate xyz_or_yxz(X,Y,Z)
represents the or constraint among three variables.

Interpretation of Constraints

When the call ¢(Constr) is executed, Constr is first trans-
formed into a canonical form. If the canonical form contains
no more than one domain variable, then it is solved imme-
diately: otherwise, it is inserted to the lists of related con-
straints of all the domain variables. When a domain variable
is assigned a value, the proagation procedure is invoked to
to sce whetlier or not the related constraints are solvable.

- bt(domain(1..10.1..10).true).
solve_puzzle:-
generate_puzzle(Vars),
labeling(Vars),
write_values(Vars).
generate_puzzle(Vars):- ’
Vars=[X1,X2,X3,X4.X5.X6.X7.X8.X9.X10],
number_vars(Vars,1),
alldifferent(Vars),
¢(X1=3),
xyz-or_yxz(X2,X3,X1),
xyz-or-yxz{X4,X5.X2),
xyz-or-yxz(X5,X6,X3).
xyz-or.yxz(X7,X8,X4).
xyz-or_yxz(X8,X9,X5).
xyz-or_yxz#(X9,X10,X6).
xyz-oryxz(X,Y,Z):-
c(X-Y=2Z).
xyz-or.yxz(X,Y,Z}):-
c(Y-X=2Z).

Figure 2: A program that specifies the arithmetic puzzle.

Problem | CHIP (VAX-783) | Beta (SPARC-2)
queens96 36.23 3.40
colorl10 5.55 0.20
sendmory 0.08 0.05
five-houses 1.49 0.10

Table 1: Comparison of execution time (seconds).

4 Conclusion

In this paper, we described a simple but efficient method
for introducing finite-domain constraint solving technicues
into Prolog. We first described Beta-Prolog, our extended
Prolog that supports Boolean tables and provides several
new primitives. We then presented a constraint solver on top
of Beta-Prolog. The constraint solver is simple. It does not
even use the delay primitive. The Prolog system does not
cause any overhead when executing usual Prolog programs.
It is also quite efficient. For several benchmark problems,
its efficiency is comparable with that of the CHIP system
(sce Table 1).

References

[1] A. Aggoun and N. Beldiceanu : Overview of the CHIP Com-
piler System, Proc. of the 8th ICLP, Ed.. K. Furukawa,
pp.-775-789, 1991.

[2] D. De Schreye, D. Pollet, J. Ronsyn, M. Bruynooghe: Imple-
menting finite-domain constraint logic programming on top
of a Prolog-system with delay-inechanisim, Report CW-104,
K.U.Leuven, 1989.

[3] P. Van Hentenryck: Constraint Satisfaction in Logic Pro-
gramming, The MIT Press, 1989.
[4] P. Van Hentenryck, H. Simonis and M. Dinchas: Constraint

satisfaction using constraint logic programming, Artif. Intell.,
59, pp.113-159, 1992.

[5] N.F. Zhou: Constant timc select, test, and update for
Boolean tables, Proc. 9th National Conference on Software
Technology, JSSST, Keio University, pp.353-356, 1992.

[6] N.F. Zhou: Global Optimizations in a Prolog Compiler for
the TOAM, to appear in J. Logic Programming. 1993.



