4—157

TRHALHE 23546181 (PR 5 fER1) AL

3G—3

Li Yaxin*

Hiroyuki Kitagawa1

Join Query Optimization in Object-Oriented Databases

Nobuo Ohbot

*Doctoral Program in Engineering, University of Tsukuba

tInstitute of Information Science and Electronics, University of Tsukuba

1 Introduction

Object-oriented database systems (OODBSs) are very
promising for supporting new data base applications.
However, there remain many research issues in imple-
menting high performance OODBSs. One important is-
sue is query processing, in particular query optimization.
In OODBSs, efficient execution of queries involving com-
plex objects is required. In this presentation, we propose
an algorithm to derive the cost optimal execution se-
quence for join queries involving complex objects under
certain assumptions.

2 Basic Terminology

Complex objects form hierarchical structures. A table
with a nest of columns and rows can be used for repre-
senting complex objects. Such a table is called a nested
relation. We consider two types of join: natural join and
natural embed [1]. Examples of natural embed and nat-
ural join, denoted by 4 and ¢ respectively, are shown in
Figure 1.

- 81
R2
$3 A B cs"ﬁ
RI TID ¥4 (S2XR1,R2) o ot el a1
el | di c——vsssatesmen - el (7]
s1 et | @ 3 | 43
57 3| o 22 1) o -
Al B T of | o4
cl
1] ®l
* c2
3
alvl % R3
[2] 33 St
81D $2 S3
E{SIXR1LRY) A B
v]al g ‘i a?
=~ c
:;: sl bl 2 &
<3
b2 |64 2 v2 | o4 43
S 4

Figure 1: Join and Embed

Corresponding to a given query, we introduce a query
graph with two edge types. One is a join edge represent-
ing natural join, and the other is an embed edge repre-
senting natural embed. A subgraph including only join

edges'is called a join cluster. An example of a query
graph is shown in Figure 2.

——— Natural join

—— Natural embeced

Figure 2: Query Graph

An execution of a query is represented by a processing
tree. A processing tree is called a binary linear processing
tree (BLPT) if all the joins and embeds performed are
binary, and no more than one temporary relation is used
as input to any join and embed.

3 Model

We propose an algorithm which derives the cost opti-
mal BLPT {or a given query graph.

3.1 Assumptions

1. Theinternal structure of a join cluster forms a trec.

2. The structure connecting join clustérs forms a tree.

3. The bottom of a BLPT is restricted to be a relation
in the root join cluster. o

4. The general cost formula (i.e., n1 x g2(n2)) is ap-
plicable for all tle join and embed methods.

5. In any M[Sk](Ri, R;) and €[Sk](Ri, Rj), Sk is the
root group of R;. v

6. Once ¢[Sk](Ri, R,) is performed, all the joins and
embeds involved in the join clusters of R; and its
descendents are performed befote any of the other

- join and embed operations.

3.2 Cost Equation

The number of tuples in group Sk of R: is denoted by
¥(R:, Sk). If Sk is the root group, v(R;, Sk) is simply de-

4—158

noted by ¥(Ri). The join and embed costs are estimated
as follows:

Cost(M[Sk](Ri, R;))
Cost(e[Sx](Ri, R;))

7(Ri, Sk) x CJT;(v(R;j, Sk))
¥(Ri, Sk) x CE;(v(R;, Sk))-

It

Here, CJ; is the cost of the join per tuple in R;, and CE;
is the cost of the embed per tuple in R;.

The number of tuples in group S, of the result re-
lation of a join operation M[Si](R:, R;), denoted by
Y(M[Sx](Ri, R;), Sm), is calculated as follows:

Case 1: S, is Sk or a child of Si
v(X[Sk)(Ri, Rj), Sm) = SJij x v(Ri, Sm) x v(R;)

where SJ;; is the join selectivity.

Case 2: Otherwise
Y(M[Sx)(Ri, R;), Sm) = 7(Ri, Sm)

Similar formulas can be derived for the result of embed
operation.

4 Query Optimization

The algorithm Opt will find the optimal BLPT for a
query graph G under the assumptions of Section 3.1.

Algorithm Opt

1. Call Supopt.

2. Select a relation R as the bottom of a target BLPT
in the root cluster Cp.

3. Call KBZ(Co, R), and get a BLPT.

4. If there is any other relation not yet chosen as the
bottom in Co, goto 2.

5. Select the optimal BLPT whose cost is the lowest.
6. End.

Algorithm Subopt

1. Let the height of the tree be H. Set level variable
i=H.
2. If i =0, then goto 10.

3. Let cn(i) be the number of clusters at level ¢, and
set cluster variable j = cn(J).

4. If y =0, then goto 9.

5. Choose the root relation R;; of the j-th join cluster
Ci; at level .

6. Call KBZ(C;;, R;_,').

7. Replace the join cluster Ci; by a relation Rep(Ci;)
in G, and replace the corresponding embed &[Sk]
(Ri, Rij) by the join M[Sk](Ri, Rep(Ci;)). Here,
Rep(Cij) is the relation obtained by executing

all joins and embeds involved in the join clus-
ter Cij and its descendants. CJ and SJ for join
M[Sk](Ri, Rep(Cij)) are given as follows.
SJ = 1/v(Rep(Cij))
CJ = CEij(7(Ri;)) + SEij x Cost(Ci;)
Here, Cost(Ci;) is the total cost to obtain Rep(Ci;).
8. =3 —1, goto 4.
9. 1=1i~-1, goto 2.
10. End.

Subprocedure KBZ(C, R) gives the optimal BLPT whose
bottom is R for a query consisting of joins involved in C

(2).

5 Example

Let us consider a query graph shown in Figure 2 as an
example. The cost parameters for this example are listed
in Figure 3. There are twelve candidate BLPTs for this
query. The above algorithm Opt finds that the following
sequence of joins and embeds (denoted by T12 in Figure
3) as the optimal BLPT.

T12=R2€R4€R3NR5NR|€R3.

1R N cr|celss)se||pr Cost PT Cost

1{ 100 |10 04 T1 | 7.249.562,000 |17 19.306.000
2 | 200 2 0.6 T2| 28837200 |3 120,162.600
3 | 100 10 02 || T3 [7.249562.000 |T9 | 4.803,306.000
4 | S00 3 o4 || T4 28956200 |T10 | 4.803,306.000
s| 1000} 2 03] TS| 28956200 jTyg 48,106,000
6] 10 10 os{| T6| 7264837200 | T2 582,600

Figure 3: Example

6 Conclusion

We have proposed the algorithm Opt which obtains
the optimal BLPT for a join query involving complex
objects. We have set a number of assumptions to restrict
the search space for the optimal query execution plan.
This may affect the applicability of the algorithm. We
will improve the algorithm to find the optimal PT in
more general search space.

References

[1] H. Kitagawa, T. L. Kunii: The Unnormalized Rela-
tional Data Model: For Office Form Processor De-
sign. Springer-Verlag, 1989

[2] R. Krishnamurthy, H. Boral and C. Zaniolo: “Opti-
mization of Nonrecursive Queries,” Proc. 12th Int.
Conf. VLDB, Kyoto, pp. 128-137, Aug. 1986.

