DAL 54618 CTE 5 4ERi M) Rk &

4—155

An Efficient Query Execution Plan for Multi-Way Joins in

3G—2

Shared-Nothing Database Environment

Lilian Harada and Naoki Akaboshi
Fujitsu Laboratories

1. Introduction

In [1], we have introduced an analytical model for the
parallel processing of multi-way joins in sharcd-nothing
database environment, with analysis of the hash-join al-
gorithm applied to the linear trees represeuted in the left
and right-deep tree structures. We have found that the
length of the pipeline segment that depends on the struc-
ture of the query execution trec, and the utilization of the
system resources (amount of main memory, disk and in-
terconnection network bandwidth) are important factors
in the efficient parallel processing of multi-way joius.

In this paper we develop a scheme to determine the
query execution plan based on the systemn resources bal-
ance so that the query can be efficiently executed in a
shared-nothing databasc cuvironment. As shown by our
siinulation, the proposed approach leads to query plans of
significantly better performance than those achievable by
the previous schemes using left-deep and right-deep trees.

2. Tradeoffs between Left-Deep and Right-Deep
Query Trees

In [1] we have introduced a performance modeling of
a multi-way join of N rclations on different N-1 join at-
tributes, i.e., Ry Mo, Ry Mo, ... M,y _, Ry, denoted
by left-deep and right-deep structures of query execution
trecs, as shown in Fig. 1(a) and (b). Using hash-join al-
gorithims, multiple joins can be pipelined so that the early
resulting tuples from a join operator, before the whole pro-
cessing of the join operator is completed, can be sent to
the next join operator for processing. In a left-deep tree,
the result of a join operator is used to build the hash table
for the next join operator, and several join operators thus
need to be executed sequentially. In contrast, in a right-
deep tree all the hash tables are built from the original
input relations, and the result of a join operator is input
into the next join operator as a probing tuple. The tuples
of the right-descendant relation can thus go through the
whole right-deep trec in a pipelined manner. When the
amount of memory is not enough to accommodate all the
N-1 hash tables, the right-decp tree can be decomposed
into disjoint segments such that the hash tables of the
active operators in ecach segment fit into memory. The
segments are executed one by one bottom up. The last
join operator in each segment have to spool its tuple pro-
duction to a temporary relation in the disk, which will be
the probing relation of the next segment.

Given the constraint of limited space, here we will only
concern ourselves with an overview of the results of our
performance wmodeling, and focus on the comparison of
the left- and right-deep trees. Complete details on the
performance modeling and evaluation are available in [1}.

When the nctwork bandwidth is much larger than the

disk bandwidth, all the segments of both left- and right-
deep trees are I/O hound and thus, the performauce is
proportional to the data transferred to/from the disks.
We could see that the left-deep trce, which determines
short pipeline segments and utilizes the available mem-
ory to build the hash table for the next pipeline seg-
ment, showed better performance than the right-deep
tree, which fully utilizes the available memory to enlarge
the segment pipeline length, at the cost of spooling the
intermediate data into the disk.

By decreasing the network bandwidth to the disk band-
width, the performance for both trees decreases. However,
we could see that the degradation was greater for the left-
deep tree. From the evaluation results, we could sce that
the right-deep tree could be processed with longer lengths
of pipeline segments, such that the maximum overlap
among the disk trausfer and the network transfer could
be achieved, leading to the best performance.

3. Execution Plan Balancing

Summarizing the results of our previous evaluation of
the left-deep and right-decp trees, we conclnde that, in
order to achieve good performance, for each pipeline seg-
ment processing, it is neccssary to have (a) good balance
between network and I/O transfer, as much as possible;
however, for I/O bound systems, this balance can not be
achieved and so, the best performance is achieved when
(b) there is no I/O of intermediate data.

As an effort to improve the execution of pipelined hash
joins, one would naturally like to devclop efficient schemes
to gencrate effective query plans that fully exploit these
results. Consequently, we propose in this paper the ap-
proach based on the balance of the system resources for
the exccution of pipelined hasli-joins. We generate a lin-
ear tree which is composed of a sct of right-deep subtrees.
But it differs from a right-deep tree in that the deter-
mination of the pipeline segment is done by considering
the systemn resources balance, and that the resulting rela-
tion of a pipeline seguent can be either written back to
disk or maintained in memory and immediately used as a
building relation for the next pipeline segment.

Because of lack of space, we only illustrate the idea
of our strategy, with no details of the costs used for the
determination of the pipcline segments, which are based
on the performance modeling introduced in {1].

The idea is to divide the query exceution plan into seg-
ments. By cousidering the available mciory size, the disk
and network bandwidths, each segment is determined as:

(1) The shortest pipeline segnient from all the possible
segments like in a right-deep tree, such that disk I/0 and
network transfers are well balanced.

(2) If a segment can not he determined satisfying (1),
choose the segment with the best balance of disk I/0 and

4—156

network transfers, by counsidering the resulting relation of
thie pipelinc segment is immediately used as a building
relation for the next segment, as in a left-deep tree.

The pipeline segments arc determined by (1) or (2) in
a top-down manner.

Fig. 1 shows an example of the query execution plans
based on the left- , right-deep tree and our approach, for a
10-way join, whose input and intermediate rclations car-
dinalities are shown in Table 1, when the available mcm-
ory is 300 Ktuples. As can be obscrved from Fig. 1,
the three approaches differ in the determination of the
pipeline segments. In the left-deep tree, cach segment
contain only one hash table. In the right-deep tree, cach
segment length is maximized, by filling the available mem-
ory with the maximum number of hash tables. On the
other hand, in our proposed tree, each segment length is
determined so that the corresponding cost of the network
and disk transfers arc as much overlapped as possible.

17 Igfhldg'
M
15 I:-N . _R10
14 pg” R9 S

M, RS ~
R~ ", R3 R1
R6 .~ M,
RS yd M (©
RE ./~ "m
R3 ~

® ~RZ Ri

Fig. 1 (a) Left-Deep Tree, (b) Right-Deep Tree
and (c) Our Proposed Tree

R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | RS |R10
K Tuple |[91.7 |96.2 |97.5 |102.9] 97.8 {109.4{105.6| 94.1{99.31106.9

H|R2[I3jM4]I5]|116 |17 18] 19
K Tuple [|91.994.9 [107.6]101.7|104.8) 92.4 | 95.3 [108.7[103.9

Table 1 Input and Intermediate Relations
Cardinalities

4. Evaluation Results

Extensive simulations were performed to evaluate the
proposed query execution plan. In the following, we
present only some representative results. We cousider a
10-way join whose relations and results sizes are shown
in Table 1, when the tuples length is 208 B. The disk
sequential and random bandwidth are maintained at 0.54
and 0.32 MB/s, and the network bandwidth are 0.54, 0.70
and 1.72 MB/s for Fig. 2, 3 and 4, respectively, which
show the execution times of the left-deep, right-deep and
our approach when varying the total memory size of a
system composed of 16 processors. As can be observed
from all three curves, our approach shows the best per-
formance by flexibly dectermining thie pipeline segments

that best fits for the given memory size, disk and network
bandwidths.

1600

1400 [—e— Qur Approach
e Right-Deep Tree

1200 [--=- Left-Deep Tree

1000 |

800 |

Elapsed Time (sec)

600 [

4000 200 400 600 800 1000

Available Memory (K Tuple)
Fig. 2 Results for net. bandwidth = 0.54 MB/s

1600
L]

§ 1400 I —— (F)!u{hA!p)proaC-P
@ T e ight-Deep Tree
_é’ 1200 .-e. Left-Deep Tree
}_—
o 1000
Q
&
®© 800 1
]

600 F

400

0 200 400 600 800 1000
Available Memory (K Tuple)
Fig. 3 Results for net. bandwidth = 0.70 MB/s

1600
§ 1400 t —=— Qur Approach
L - Right-Deep Tree
é 1200 -.=. Left-Deep Tree
'_
2 1000 ¢
a
© 800 }
iy

600 } .

400 v -

0 200 400 600 800 1000
Available Memory (K Tuple)

Fig. 4 Results for net. bandwidth = 1.72 MB/s
5. Conclusion

In this paper we have presented a quety cxecution
plan which considers the load bhalance for determining the
pipeline segments for a multi-way join in a shared-nothing
database environment. Preliminary experinients indicate
that the consideration of the system resource balauce are
effective in producing parallel exceution plans, with bet-
ter performance than those achicved by the traditional
schemes using left-deep and right-deep trees.

References

{1} L.Harada and N.Akaboshi, "Evaluation Results of Multi-
Way Joins in Shared-Nothing Database Environment”, t§
HALE R 45 EEIAR, 5R-2, 1992

Acknowledgment

We wish to thank Mrs. Miyuki Nakano from Univ. of Tokyo

for many helpful suggestions on this subject.

