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A Unified Procedure to Overcome the Byzantine General’s Problem

for Inter-gate and Intra-gate Bridging Faults in CMOS Circuits

Arabi Keshk,† Yukiya Miura†† and Kozo Kinoshita†

In this paper, we present two algorithms, which can be used to overcome the Byzantine
General’s problem for bridging faults during the fault simulation and test pattern generation.
The first algorithm applies to hard short bridging faults, and the other applies to resistive
bridging faults. These algorithms apply to inter-gate and intra-gate bridging fault. By using
these propose algorithms, the usual comparison between the intermediate potential and the
logic threshold of the driven gates is replaced by the comparison between the equivalent
resistance of the pull-up and pull-down conducting transistors. Moreover, the algorithm is
much faster since no spice simulation is required. The accuracy is of ±0.01 V to compare with
SPICE simulation for hard short bridging fault and ±0.2 V for resistive bridging fault in the
interval of intermediate voltage.

1. Introduction

It is known that the bridging faults (BFs) are
the major failure source of the VLSI circuits.
This kind of fault is due to the failure of two or
more leads unintentionally shorted. This defect
causes different behavior to the faulty circuits
depending on the value of the bridging resis-
tance1). Traditionally, bridges have been re-
garded as shorts connecting two or more nodes
through a path with a resistance equal to zero.
More recently, the possibility of a higher re-

sistance for a bridging defect has been taken
into account. It has been shown that a bridging
fault is hard to be modeled using the stuck-at
fault model2). There are two testing method-
ologies being used to test bridging faults. First,
a logic/function test technique that determine
test results by measuring the output voltage of
CUT or validate the correct operation of a sys-
tem with respect to its functional specification
for most complex circuits such as microproces-
sor3). The faulty behavior of a gate with a
bridging fault can be determined using simu-
lation and the results can be used to sensitize
the gate’s inputs to the output. Second, IDDQ

testing technique determines the test results by
monitoring quiescent supply current of CUT4).
It is a basic assumption to generate the IDDQ

testing sets that two nodes with opposite logic
are connected together.
The resistance of a bridge fault is critical in
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determining whether the fault can be detected;
if the resistance is too high, the fault will not
cause an error at the output during functional
testing or abnormal IDDQ during IDDQ test-
ing. In addition, if the bridge resistance is as-
sumed very low, incorrect diagnoses might oc-
cur if the logic threshold values for gates driven
by one output of the two-bridged gates are not
the same, and if the logic levels for these gates
are therefore interpreted differently. This sce-
nario is referred to as the Byzantine General’s
problem5).
A few works have been done to face the

Byzantine General’s problem such as the works
in Refs. 6) and 7). Renovell, et al.6) proposed
complex calculation model to collapse P and
N network transistors based on the concept of
mean value to evaluate the bridging voltages.
Moreover this work did not address the resis-
tive bridging faults. Lee, et al.7) proposed an-
other solution for Byzantine General’s problem
for a resistive bridging fault by using an iter-
ation method, and assumed a calibrating fac-
tor to collapse P and N network transistors
which achieved accuracy outside the interval
of intermediate. The accuracy of this proce-
dure depends on more iterations. Indeed, more
accuracy of evaluating a bridging voltage in
the interval of occurence intermediate voltage
is necessarily. In this paper, we will provide a
more accurate result from previous works, espe-
cially in the interval of occurrence intermediate
voltage (2–3) V. Moreover for the resistive BF
we determine the interval of intermediate volt-
age by the relation between the resistance of
BF and the equivalent resistance of the pull-up
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(Rpeq.) or pull-down (Rneq.) networks. Our
method achieves more accuracy by using sim-
ple calculation that uses the determination of
the relation between the resistances of pull-up
and pull-down networks for hard short and re-
sistive BFs. Moreover, the method doesn’t need
the use of iterative method and SPICE simula-
tion to overcome Byzantine General’s problem
in hard short and resistive BFs.
A preliminary version of this work has been

proposed in Ref. 8). This paper is organized
as follows. Section 2 describes the bridging
fault model and the Byzantine General’s prob-
lems for inter-gate and intra-gate BF. Sections
3 and 4 describe hard-short and resistive bridg-
ing fault simulation, and present two algorithms
to overcome the Byzantine General’s problem.
Finally, Section 5 presents the conclusions.

2. Preliminary

2.1 Bridging Fault Model
Bridging faults occur when two or more elec-

trically distinct nodes of the circuit get con-
nected due to a defect. Some bridges occur
when dust or extra material is deposited dur-
ing fabrication. The result is that two distinct
nodes on the same gate get connected. Cir-
cuit nodes on two adjacent gates can also get
shorted as shown in Fig. 1 (a), while Fig. 1 (b)
shows that the transistor level of the bridg-
ing gates. Most of the early approaches have
used the classical stuck-at-0/1 fault model for
intra-gate bridging and wired logic for inter-
gate bridging.
To detect a bridging fault between X and Y

nodes, that nodes must be set to opposite val-
ues, for example X set to 1 (0) and Y set to 0
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Fig. 1 External bridging fault.

(1) and the voltage of the faulty nodes must be
sensitized to an output. According to the effect
of resistance Rf and the effect of the driving
gate the bridging lines can have intermediate
voltage values VX and VY (not well defined logic
values of 1 or 0). In order to simulate the effects
of a bridging fault it is necessary to determine
the intermediate voltage of the shorted nodes
and compare it to the logic threshold voltage of
the driven gates. Possibly leading to logic er-
rors when the downstream of logic gates from
the bridge nodes can have different input logic
thresholds. Thus the intermediate voltage at a
bridged node may be interpreted differently by
different gates. This is known as the Byzantine
General’s problem. In steady state conditions,
the detectability of this kind of fault can be de-
termined only by correctly evaluating the posi-
tion of the intermediate voltage with respect to
the logic threshold of the driven gate7).
We next define some terminology. A node

which is either an input or an output of a gate
is an external node of the gate. In Fig. 1, a,
b and X are the external nodes of gate G1.
Other nodes of the gate, such as Z of gate G2
in Fig. 1 (b) are internal nodes. Shorts between
nodes of two different CMOS gates are inter-
gate BF’s. Inter-gate BF’s can occur between
the external nodes of two gates (X and Y bridge
in Fig. 1 (a)) and are known as external BF’s.
Inter-gate BF’s can also involve one internal
node of a gate. Note that this does not take
some faults into account, such as BF between
internal nodes of different gates, because usu-
ally the probability of their occurrence is neg-
ligible9). BFs involving only nodes of one gate
are intra-gate BF’s (X and Y bridge in Fig. 3).
If the bridge resistance is small then it is a hard
short BF else it is a resistive BF. Our target
in this work is to propose a unified procedure
to solve Byzantine General’s problem for inter-
gate and intra-gate BF’s.

2.2 Byzantine General’s Problem
(BGp)

Byzantine fault behavior means that an inter-
mediate value within a certain interval may be
interpreted as different logic values by different
gates owing to the variation in threshold volt-
age between different gate types. An inter-gate
bridging fault is illustrated in Fig. 2 where the
outputs of both a NAND and a NOR gates are
shorted together. An intra-gate bridging fault
is illustrated in Fig. 3 where nodes X and Y of
an AOI (AND-OR-INVERTER) are shorted to-
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gether. The logic thresholds of the driven gates
are indicated in the figures.
In Fig. 2, when the input vector is (a, b, c, d,

e, f) = (0, 0, 0, 1, 0, 1), in the fault free circuit
the output of the X and Y nodes would be ‘1’
and ‘0’ respectively. Assuming a low resistance
(10 ohm) short, VX=VY =VM , and the SPICE
simulation shows that the intermediate output
voltage (VM ) is 2.5V. This intermediate voltage
must be now compared to the logic threshold
voltage (VT ) of the driven gates.
Assume that the input of the NOR gate has

a logic threshold voltage VT equals 2.57V and
the threshold input of the NAND gate equals
2.16V. In this condition, the faulty input of
NOR gate interprets the voltage VM as a logic
‘0’ (X = 0), and the faulty input of NAND gate
interprets VM as a logic ‘1’ (Y = 1) as shown in
Fig. 2 Taking into account the logic threshold
of the driven gate, it is clear that the bridg-
ing cannot be modeled using wired logic. In
Fig. 3, the same phenomenon can be observed
for intra-gate AOI (V out = (a+ b+ c+ d)e).
Taking into account the logic threshold of the
driven gate, it clearly appears that the bridging
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Fig. 4 BF for CMOS gate.

cannot be viewed as a stuck-at fault.
These two small examples clearly illustrate

the problem of realistic fault model for inter-
gate and intra-gate BF’s. In the next sections,
we simulate the BF in the case of Rf is very
low and other cases when Rf has different val-
ues compared with the channel resistance of the
conducting transistors.

3. Hard Short BF Simulation

The general problem of the BF can now be
expressed as follows:
( 1 ) Determine VM between the P and N con-

ducting transistor networks,
( 2 ) Compare VM with the known VT of the

driven gate.
Figure 4 shows the general structure of BF
in Fig. 2 when applied (0, 0, 1, 0) on (b, c, d, e).
The transistor level BF is shown in Fig. 4 (a),
and the equivalent conducting transistors have
been represented in Fig. 4 (b), where Rpeq. and
Rneq. are the equivalent resistance of the con-
ducting transistor in pull-up (Pnet.) and pull-
down (Nnet.) networks.
There are four cases for (Pnet., Nnet.): (sat-

uration, saturation), (linear, saturation), (sat-
uration, linear), (linear, linear). For Pnet.
to saturate, we must have V gd > VTp, then
VIN−VX > VTp. Substituting the values of VIN

(0 V), and VTp (−0.75V) into this equation, we
obtain VX < 0.75V. If Pnet. is in the linear
region then VX > 0.75V and may have inter-
mediate voltage. Similarly if Nnet. is in the
linear (saturation) region then VY < (>) 4.25V
at VTn (0.75V). The voltage ranges with re-
spect to the four cases are shown in Table 1
and the estimation of intermediate voltage on
VX and VY . The Lin. (Sat.) is abbreviation of
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Table 1 Estimation of occurence of BGp.

P net.   N net.    V X       V Y      BG p  for  hard
                                                   short BF

Sat.      S at.   <0.75V   >4.25V         0

Lin.       Sat.  >0.75V >4.25V          0

Sat.      Lin .  <0.75V <4.25V          0

Lin.      Lin.  >0.75V <4.25V   (V X & VY )
                                               V X orV Y or both*

* Estim ation of BG p for a res istive BF

linear (saturation) region. The estimation VX

(VY ) means that the Byzantine General’s prob-
lem may occur on the faulty node X (Y), and
0 means that the Byzantine General’s problem
does not occur.
We assumed that the resistance of channel for

pull-up transistor (Pnet.) equals the resistance
of channel for pull-down transistor (Nnet.).
When ‘Rf = 0’ or is very low (10 ohm), it is
possible to write the equality of the source-to-
drain current for the P (Isdp) and the drain-to-
source current for the N (Idsn) transistors as
shown in Fig. 4, and both VX and VY are equal
to VM . The following equation is obtained

VDD− VM

Rpeq.
=

VM

Rneq.
, then

VM

VDD− VM
=

Rneq.
Rpeq.

. (1)

From the CMOS process parameters, we ap-
proximate the drain-to-source resistance for lin-
ear Nmos and Pmos transistors by Ref. 10),

Rn = 1
βn(VDD−VTn ) , Rp = 1

βp(VDD−|VTp |) .

Note that both Rn and Rp are inversely pro-
portional to (W/L); increasing the aspect ratio
decreases the equivalent resistance. The resolu-
tion of these equations could give the value of
VM as a function of the CMOS parameters βp,
βn, VTp, and VTn. Where β and VTp (VTp) is
device transconductance value and P(N) tran-
sistor threshold, β = K(W/L) where K is pro-
cess transconductance.
Equivalent resistance of parallel and serial

transistors can be calculated by using the fol-
lowing equation,

Req. = 1
βeq.(VDD−VTM

) .

Where VTM
is the mean value of the threshold

of serial or paralell networks, βeq. for paralell
nertwork will be

βeq. =
n∑

i=1

βi.

and βeq. for serial network can be approximated
as

1
βeq.

=
n∑

i=1

1
βi

.

However for a serial network this deviation
is done based on the assumption of neglect
the body effect and the transistor connected
to VDD or GND is at the saturation region7).
This conflicts with the fact that transistors in-
volving in bridging faults are likely to operate
in a linear region. The experimental data in
Ref. 7) shows that a calibrating factor 0.75 for
both P and N serial networks should be multi-
plied to the above equation to achive high ac-
curacy. Then the above equation will be

1
βeq.

= 0.75
n∑

i=1

1
βi

.

By taking into account this calibrating factor
on Eq. (1), then Eq. (1) will be

VM

VDD− VM
=

Rneq.
0.75Rpeq.

. (2)

According to the simulation results in the
previous work in determination of the thresh-
old for CMOS gates11), we consider the inter-
val [2, 3] V for VDD = 5V for the intermediate
value. Faults resulting in voltages outside that
interval are considered to be interpreted as nor-
mal logical values regardless of parameter vari-
ations and Byzantine fault behavior. Table 1
shows the intermediate voltage is occured when
the transistors are linear, and also our work in
Ref. 8) shows that the occurence of intermedi-
ate voltage in hard short BF occurs only when
Rpeq. = Rneq. or even very close as shown in
Fig. 5. The simulation results for different cir-
cuits show that by using Eq. (1) in the interval
of intermediate voltage is more accuracy from
using Eq. (2). Outside the interval of interme-
diate voltage the Eq. (2) is more accuracy (see
Fig. 7). When Rneq. = Rpeq. as shown in Fig. 2
we have

VM

VDD− VM
=

Rneq.
Rpeq.

= 1.

We define Rneq./Rpeq. by RInt, and RTh =
VT /(VDD−VT ) as the value of RInt which pro-
duce VM = VT . As previously mentioned the
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logic behavior of the BF is deduced from the
comparison between the intermediate bridge
voltage VM and the logic threshold voltage VT

of the driven gates. The basic and very simple
principle is: For a driven gate,
if VM (RInt) > VT (RTh) then X = Y = 1,
if VM (RInt) < VT (RTh) then X = Y = 0.

Figure 2 shows the value of VT of the input
NOR = 2.57 and RTh which equals VT /(VDD−
VT ) > 1; according to the last principle we find
VM < VT then X = 0. In the case of VT of the
input of NAND gate = 2.16 and VT /(VDD −
VT ) < 1 then VM > VT ; Y = 1 as illustrated in
Fig. 6.
It is now possible to describe the global proce-

dure to detect the bridging faults using Eq. (1)
for the relation between RInt and RTh. Note
that the procedure is very simple and does not
need SPICE simulation. It can be represented
by the following algorithm:
For each external/internal inter-gate or
intra-gate bridging between X, Y nodes
Do begin
-From the logic values present on the gates, de-
termine the transistor connectivity
-Replace all series conducting transistors with
an equivalent one
-Replace all parallel conducting transistors with
an equivalent one
-Compute RInt=Rneq./Rpeq.
- For each driven gate input do begin
- Compute RTh from VT of a driven gate
- If RInt > RTh then node=1; else
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Fig. 7 Validation of our algorithm.

node=0
- End
End
In order to validate the previous algorithm,

the external bridging between 3-NAND and 4-
NAND have been simulated and compared as
shown in Fig. 7, which gives the intermediate
voltage VM versus RInt (Rneq./Rpeq.) charac-
teristics for external BF by using Eq. (1) and
Eq. (2). We observe that the agreement is ex-
tremely good between the PSPICE simulation
result and our algorithm whatever the resulting
voltage VM especially in the interval of inter-
mediate voltage (2–3) V, which leads to Byzan-
tine General’s problem. The accuracy in this
interval is more important than other interval.
For example, (0–2) V is considered as logic 0
and (3–5) V is considered as logic 1. In Fig. 7
the worst case of Eq. (1) presents a difference of
±0.01V (±0.08V) inside (outside) the interval
of intermediate between the simulation results
and our algorithm which represents an excel-
lent accuracy in the interval of intermediate.
The worst case of Eq. (2) presents a difference
of ±0.16V (±0.01V) inside (outside) the inter-
val of intermediate, which is a very acceptable
accuracy outside the interval of intermediate.

4. Resistive BF Simulation

In this section, we first assume the P-network
and the N-network are only composed of a sin-
gle transistor. Figure 8 illustrates the faulty
situation with a single N and P conducting
transistors according to the different cases of
Table 1. The demonstration will be extended
to serial and parallel transistors by using an
equivalent resistance instead of a single resis-
tance. Hence for the resistive BF (Fig. 8) we
have Isdp

∼= Idsn
∼= IRf , and then

VDD− VX

Rp
=

VY

Rn
=

VX − VY

Rf
. (3)
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According to Table 1 and Eq. (3), we next dis-
cuss the four possible cases for P and N tran-
sistors.
1: (P, N) = (saturation, saturation)
From Table 1, we have VX < 0.75V and VY >

4.25V. Since it contradicts to VX > VY , this
condition is impossible.
2: (P, N) = (linear, saturation)
From Table 1 and Fig. 8, we have VX > 0.75V

and VY > 4.25V. Since VX > VY , we have
VX > 4.25V. From Eq. (3), we have

VX − VY =
Rf(VDD− VX)

Rp
(4)

and

VX − VY =
Rf(VY )

Rn
. (5)

Dividing Eq. (4) by Eq. (5), we obtain
VX = VDD− VY (Rp/Rn) > 4.25.

Substituting VY when N transistor is satu-
rated by 4.25 we have

Rn/Rp > 5.6
Clearly the ratio more than 5.6 may not be

used for most logic circuits, hence this condition
is very weak. If this condition occurs, then since
both VX and VY are greater than 4.25V, they
both have a logic 1, and intermediate voltage
does not occur. Therefore this condition results
in a wired-OR logic. Note that Rf is cancelled
out when dividing Eq. (4) by Eq. (5). Therefore
the ratio Rn/Rp > 5.6 provides a quick method
to determine whether this case can occur or not,
and this greatly simplifies the test generation or
fault simulation process.
3: (P, N) = (saturation, linear)
From Table 1 and Fig. 8, both VX and VY are

smaller than 0.75V in this case. Using a similar
derivation as in the previous case, we obtain

VY = (Rp/Rn)(VDD − VX) < 0.75.

For VX = 0.75V at saturated we have
Rn/Rp < 0.18.

Although this condition is also very weak
since in general the value of Rn/Rp is taken
between 2 and 3 in logic circuits for reason of
balanced rising/falling times, this case may not
occur as the previous case. Hence this case re-
sults in a wired-AND logic, and intermediate
voltage does not occur. In our system we can
also check out the condition quickly without
considering the value Rf .
4: (P, N) = (Linear, linear)
According to Table 1 and Fig. 8, VX > 0.75V

and VY < 4.25V. In this case we can say the
ratio Rn/Rp is

0.18 < Rn/Rp < 5.6.
The estimation of occurrence of intermediate

voltage in this condition is more likely than the
previous conditions. Therefore, next we discuss
in detail with the general case of Eq. (3). ac-
cording to the design of CMOS circuits. We as-
sumed three cases for the value of channel resis-
tance of pull up and pull down networks, which
are (i) Rpeq. = Rneq., (ii) Rpeq. > Rneq. and
(iii) Rpeq. < Rneq. Hence for the resistive BF
the general case of Eq. (3) becomes

VDD− VX

Rpeq.
=

VY

Rneq.
=

VX − VY

Rf
. (6)

We can obtain on three initial conditions for
VX and VY according to the relation between
Rpeq. and Rneq.;
(i) Rpeq. = Rneq., thenVDD− VX = VY ,
(ii) Rpeq. = 2Rneq., thenVDD− VX = 2VY ,
(iii) Rneq. = 2Rpeq., thenVDD−VX = VY /2.
The initial condition of Case (i) means that

both VX and VY have intermediate voltage at
low resistive BF. The value of VY is inversely
proportional to Rf (increasing of the Rf de-
creases VY ), and vice versa for VX . From
Eq. (6), we can find the relation between Rf
and Rpeq. (Rneq.) as follows:

VX − VY

VDD− VX
=

Rf

Rpeq.
. (7)

As we have mentioned above we choose VX =
3V and VY = 2V for the interval of interme-
diate voltage. Substituting these values of VX

and VY in Eq. (7), we can obtain on the critical
value of Rf , which equals 0.5Rpeq. (Rneq.).
For more than 0.5Rpeq., VX(VY ) is equal to
logic 1 (0).
Case (ii) is inverse of (iii), but Case (iii) is

more realistic than (ii). Thus in the case of
Rpeq. < Rneq. (Rneq. = 2Rpeq.), the initial
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condition as mentioned above is VDD − VX =
VY /2. The interpretation of this initial con-
dition is that both values of VX and VY have
the high value (∼= 3.33V) at the starting point.
When the value ofRf increases VY will decrease
and may be the intermediate value, and VX will
increase more. Therefore, when Rf increases
and Rneq. equals two times of Rpeq., then from
Eq. (6) we obtain

VX − VY

VY
=

Rf

2Rpeq.
. (8)

Substituting VX from the initial condition
(iii) and VY by 3V in Eq. (8), we obtain on
the critical value of Rf that equals one third
(1/3) of Rpeq. Similarly, when VY is equal to
2V, we obtain Rf that is equal to 2Rpeq. Thus
the value of VX has logic 1 for all values of Rf
and VY has intermediate value in the interval
of Rf that is equal to [1/3–2] Rpeq. and larger
(lower) than this value for VY = 0(1).
In general case for Rneq. = mRpeq., where

m > 1, the VY has intermediate value in the
interval of Rf that is equal to [(2m/3 − 1) ∼
(3m/2− 1)]Rpeq. Note that Case (ii) is the op-
posite of (iii). Thus in (ii) the value of VY has
logic 0 for all values of Rf and VX has interme-
diate value in the interval of Rf equals [1/3–
2]Rneq., (in general [(2m/3− 1) ∼ (3m/2− 1)]
Rneq.), and larger (lower) than this value VX =
1(0).
However, the PSPICE simulations have been

done on Eq. (6) for a variety of BFs to verify the
accuracy of our algorithm. The plotting of volt-
age on X and Y nodes as a function of Rf rel-
ative to Rpeq. for Rpeq. = Rneq. and Rneq. =
2Rpeq. as shown in Fig. 9. and Fig. 10 respec-
tively. Figure 9 shows the external BF between
2-NAND and 2-NOR gates when Rp equals Rn
and the internal BF between two 2-NAND gates
when Rp equals 2Rn, but in both cases Rpeq.
equals Rneq., and we find that when Rf is very
low, VX and VY have intermediate voltage until
Rf equals 0.5Rpeq. Above that value we have
shown that VX equals logic 1 and VY equals
logic 0.
Figure 10 shows the external bridge between

two 2-NAND gates when Rpeq. < Rneq. and
m = 2. The value of VX has logic 1 for all
values of Rf and VY has intermediate value in
the interval of Rf is equal to [1/3–2]Rpeq., and
larger (lower) than this value VY = 0(1). From
Figs. 9 and 10 the maximum deviations from
the PSPICE simulations is ±0.2V when Rpeq.
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= Rneq. and −0.2V when Rneq. = 2Rpeq.
It is possible now to describe the second algo-

rithm to test bridging faults for different values
of Rf as follow:
For each external/internal inter-gate or
intra-gate bridging between X, Y nodes
Do begin
-From the logic values present on the gates, de-
termine the transistor connectivity
-Replace all series conducting transistors with
an equivalent one
-Replace all parallel conducting transistors with
an equivalent one
- For pull up/down network do begin
-Compare Rpeq. and Rneq.
-If Rpeq. = Rneq., Rf ≥Rpeq./2, then VX =
H, VY = L,
-If Rneq. = mRpeq., and Rf < [2m/3 −
1]Rpeq., then VX = VY = H,
-If Rneq. = mRpeq., and Rf ≥ [3m/2 −
1]Rpeq., then VY = L, VX = H,
-If Rpeq. = mRneq., and Rf < [2m/3 −
1]Rneq., then VX = VY = L,
-If Rpeq. = mRneq., and Rf ≥ [3m/2 −
1]Rneq., then VX = H, VY = L,
- For each driven gate i/p do begin
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-Compute VX and VY ) by Eq. (6)
-If either VX or VY > VT then node = 1; else
node = 0
- End
- End
End
Finally, we can summarize that the resistive

bridging voltage calculation by checking the ra-
tio Rneq./Rpeq., the function of BF is evalu-
ated in one of the following cases:
1. (Rneq./Rpeq.)> 5.6: a wired-OR logic is
adopted.
2. (Rneq./Rpeq.)< 0.18: a wired-AND logic is
used.
3. 0.18 < (Rneq./Rpeq.)< 5.6: the last algo-
rithm is used.

5. Conclusions

In this paper we have presented two algo-
rithms which can be used to determine if a par-
ticular structure of transistors gives an inter-
mediate voltage which is higher or lower than a
given threshold voltage of a driven gate. These
algorithms applied to hard short and resistive
BF for both inter-gate and intra-gate BF. We
have performed the simulation to verify our
work. The worst case presented a difference
of ±0.01V for hard short BF and ±0.2V for
resistive BF in the interval of intermediate [2,
3] V between the simulation results and our al-
gorithms. It should be recalled that these pro-
posed algorithms allow to overcome the Byzan-
tine General’s problem for the bridging faults
with the accuracy of SPICE simulations and
a negligible effort since neither pre-simulation
(such as preparing the circuits under simula-
tion by entering parameters for each compo-
nent) nor iterative procedure are required, com-
pared to previously published methods.
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