
Vol. 41 No. 7 IPSJ Journal July 2000

Regular Paper

Aglet-Voyager Converter:

An Approach for Mobile Agent Systems Integration

Djoni Tjung,† Masahiko Tsukamoto† and Shojiro Nishio†

Mobile agents are emerging as a new technology of building distributed systems. A num-
ber of mobile agent systems have been developed in recent years with different approaches
and vary in the features they provide, such as mobility and security. To enable these sys-
tems to work together in providing interoperability, we should provide a mechanism of mobile
agent systems integration, especially, ones that enable the migration of mobile agents through
different systems. In this paper, we introduce mobile agent systems integration based on con-
verter approach and propose two strategies called dynamic conversion and autoconfiguration
strategies based on the approach. To realize the proposed strategies, mapping between two
systems, dynamic conversion mechanism that enables transparent movement between systems,
and inter-agent messaging between systems based on the three-tier architecture are required.
We implemented all these required capabilities and have chosen two well-known Java-based
mobile agent systems called the Aglet (from IBM) and the Voyager (from ObjectSpace) as
the implementation targets. The prototype system has successfully provided a transparent
mobile agent migration from Aglet system to Voyager system based on the proposed dynamic
conversion strategy.

1. Introduction

Mobile agents (MAs) are emerging as a
new technology of building distributed systems.
The concept of MA may be viewed as an ex-
tension of existing technologies such as process
migration 1), mobile objects 2), and remote eval-
uation 3). These technologies are intended to
improve on remote procedure calling (RPC) for
distributed systems in reducing network traf-
fic, utilizing asynchronous operation and other
benefits.
A number of MA systems have been devel-

oped in recent years with different approaches
and vary in the features they provide such as
mobility and security. This diversity of MA
systems will need interoperability among those
systems to support a more general MA execu-
tion. Hence MA systems integration is indis-
pensable in heterogeneous and distributed en-
vironment.
The current explosion of interest in MA sys-

tems is due almost entirely to the widespread
adoption of Java 4). In the past few years,
a number of MA systems have been designed
and implemented in academic institutions and
commercial firms. Taking the advantages of
Java’s platform independency and other fea-
tures, Java-based MA systems are increas-

† Department of Information Systems Engineering,
Graduate School of Engineering, Osaka University

ing in numbers such as Aglet 5) from IBM,
Voyager 6),7) from ObjectSpace, Concordia 8)

from Mitsubishi Electric ITA and Odyssey 9)

from General Magic.
The term MA has many definitions among

researchers and developers because of the term
“agent”. In this paper, we adopt the defini-
tion which says MAs are programs, typically
written in a script language, which may be dis-
patched from a client computer and transported
to a remote server computer for execution 10).
The current available MA systems are similar in
some features but also different in some specific
features due to their designs and implementa-
tions. We show those Java-based MA systems’
features summary 11) in Table 1. Although
there are still many problems to be solved in-
cluding security issues, we believe that in the
future there will be multiple MA systems in use
rather than only one default system. Therefore
we see the importance and need of transparency
between systems. What we mean by ‘trans-
parency between systems’ is the ability which
enables MA to move transparently to another
type of system, and continuing its execution as
if the system is of the same type. Here, sys-
tem type refers to an agent model which distin-
guishes one system from another. An MA from
one type cannot be transfered to nor executed
in other systems of a different type.
For example, there are two companies that

apply MA systems into their computing envi-

2027

2028 IPSJ Journal July 2000

Table 1 A summary of Java-based mobile agent systems features.

ronments from a different type of system. Let
us say the two companies want to collaborate in
a business which requires a certain MA applica-
tion to work in both sides, and one of them has
already applied the application in its environ-
ment and want to share the application to work
for both. Then they will face up to the problem
of interoperability as the system types are dif-
ferent. The best solution is to make the same
application work at the other company since to
build the same system is costly and to rebuild
the application for the other system is also will
take many resources. Therefore, transparency
between both systems in both companies will
help greatly for the collaboration.
In this paper, we propose two different

strategies for multiple MA systems integration
based on a converter approach called the dy-
namic conversion strategy and the autoconfig-
uration strategy.
The rest of the paper is organized as follows:

Section 2 discusses the strategies of integrating
multiple MA systems. In Section 3, we intro-
duce the Aglet-Voyager MA system as an ex-
ample and address event handling and method
mapping in general. Also we provide the unified
address and inter-agent messaging mechanism.
With the inter-agent messaging mechanism we
make it possible for an MA that can be moved
from an Aglet system to a Voyager system to
go back to an Aglet system again. Next, we
present the prototype system in Section 4. In
Section 5, we compare our approach with re-
lated works. Finally, we discuss important top-
ics concerning systems integration in Section 6
and provide a conclusion in Section 7.

2. Integration Strategies

An MA system is different from others be-

Fig. 1 Dynamic conversion strategy.

cause of the following matters:
• The underlying programming language.
• The object model.
• The event model and its event handler.
• The addressing model.
• The messaging model.
Therefore, language conversion and model

conversion are necessary in MA systems inte-
gration. Since a unified intermediate language
approach is a very formidable task, we focus
on the rest and propose the integration using
converter as a realistic approach.
In this section, we address two kinds of

strategies which use converter as the solution
to multiple MA systems integration. The dy-
namic conversion strategy described in Fig. 1
provides dynamic MA conversion from one sys-
tem to another system of different type. Fig-
ure 2 illustrates the autoconfiguration strategy
which provides the resemblance MA to another
system before the execution of an MA.

2.1 Dynamic Conversion Strategy
The dynamic conversion strategy provides

dynamic MA conversion from one system to an-
other system of different type. This means that
an MA can migrate to another system of dif-
ferent type through the process of conversion
which is dynamically done when needed. The
dynamic conversion strategy consists of the fol-
lowing components:

Vol. 41 No. 7　　　　Aglet-Voyager Converter: An Approach for Mobile Agent Systems Integration 2029

Fig. 2 Autoconfiguration strategy.

Converter: In both the dynamic conversion
strategy and the autoconfiguration strat-
egy, we use a converter to translate MA
source code from one type to another type
of MA system. The converter is not just
doing a plain source code conversion but
will have to use some information added
by the precompiler to make the conversion
to work properly for the new system such
as the resemblance MA creation and its self
recognition (see Section 3.3) in the conver-
sion system. Hence there is a need to attach
the source code into its executable MA in
the dynamic conversion strategy. We will
discuss the details in Section 3.

Message relay agent (MRA): MRA is a
stationary agent which relays messages
from an MA of one system to another
MA at another system which differs in
type. MRA is used for inter-agent commu-
nication among different type of systems.
There is one MRA for each system type
in the conversion system. Further informa-
tion on how the MRA works will be pro-
vided in Section 3.

Conversion system: The converter and
MRA exist in the conversion system. The
conversion system is the border system be-
tween two systems of different type on
where both systems also exist. It pro-
vides the environment for accessing com-
mon memory and workspace between the
two systems.

Precompiler: In order to make an MA trans-
ferable transparently among systems of
different types, we provide the precom-
piler which embeds the dynamic conversion
mechanism into the MA. We will present
the mechanism in Section 3.

In the dynamic conversion strategy, as illus-
trated in Fig. 1, the original MA source code for
system A is passed to the precompiler to pro-
vide it the dynamic conversion mechanism. As
a result, a new MA source code which enables

its instance to move to another system (system
B) transparently, is created. Using the new cre-
ated source code, an MA is executed in system
A. When the MA is told to move to system B
at host 3, it will first dispatch to system A in
the conversion system and output its current in-
ternal state into commonly accessible memory
from both system A and B such as files. Then
it will pass its own source code to the converter
program to create a new MA source code for
system B. The resemblance MA will be created
for system B from the source code. Next, the
resemblance will restore its internal state from
the common memory used to output the inter-
nal state. Finally the MA that has exactly the
same internal state of its peer in system A, will
move to system B at host 3 and continue the ex-
ecution on behalf of the MA in system A. All of
these steps are done automatically by the MA
itself; therefore there is no need to modify the
hitherto MA systems.
The detailed steps of migration between sys-

tem A and system B are shown in Fig. 3. Af-
ter the first migration, then the MA can mi-
grate between both the systems without con-
version overhead because of the reuse of equiv-
alent MAs in the both systems. As a result the
conversion and compilation procedures will be
skipped and reduced into four steps. Since the
strategy will perform an MA conversion auto-
matically at the first place when inter-system
migration takes place, it is suitable for non-
real time applications such as those that make
asynchronous access to large data or collecting
data from the Internet in the mobile comput-
ing. Furthermore, the precompilation will not
require the conversion system to be available
online through network connections. Hence, it
is most applicable to mobile users for whom the
network connections may be expensive.

2.2 Autoconfiguration Strategy
The autoconfiguration strategy has the fol-

lowing distinct components compared with the
dynamic conversion strategy:
Configurator: The configurator takes an

MA source code as an input and creates
an MA which has the capability to move
transparently to other different systems.
The configurator also provides the MA the
mechanism to pass its internal state at the
conversion system to its resemblance of dif-
ferent type. The resemblance is created by
the configurator using converter before the
MA execution starts.

2030 IPSJ Journal July 2000

Fig. 3 Detailed steps of migration between system A and system B.

Conversion system: The conversion system
is the same as that in the dynamic conver-
sion strategy but without a converter in the
system.

The converter and MRA in this strategy are the
same as above in Section 2.1.
In the autoconfiguration strategy, as illus-

trated in Fig. 2, the original MA source code
for system A is passed to the configurator. The
configurator then converts the source code us-
ing the converter into the MA source code of
system B and allocates it into system B at the
conversion system. It also provides the MA the
mechanism to pass its internal state to its re-
semblance in system B at the conversion system
when it reaches the conversion system. Finally,
the resemblance moves to system B at host 3
and continues the execution as if the MA moves
directly from system A to B. Same as the dy-
namic conversion strategy, all of these steps are
done automatically by the MA itself; therefore
there is no need to modify the hitherto MA sys-
tems.
The detailed steps of migration between sys-

tem A and system B are equal to those in the
dynamic conversion strategy described in Fig. 3.
Since the autoconfigurator will perform an MA
conversion before it is to be used, this strategy
is suitable for users or systems that stay on-
line most of the time; therefore the real time
applications such as electronic commerce appli-
cations and stock markets monitoring one will
be their best performance.

3. Aglet-Voyager Mobile Agent Sys-
tem

In this section, we demonstrate how our
strategies work as the integration of two dif-
ferent types of MA systems. For this purpose,

we choose two relatively mature Java-based MA
systems called Aglet from IBM and Voyager
from ObjectSpace to show the real solution to
the MA systems integration problem using our
strategies. We choose Aglet and Voyager be-
cause they are popular, easy to install, well doc-
umented, easy to understand and have simple
yet powerful example codes to show off their
important features.

3.1 Event Related Mapping
In creating a converter, the main interest is

how we convert one model to another. Since the
chosen MA systems are based on Java language,
their source codes are written in the same pro-
gramming language which makes the conver-
sion from one system to another much simpler.
Therefore we will focus on how to realize the
conversion between the two MA models.
Aglet has an event model and its event lis-

tener, i.e., event handler as shown in Table 2.
When the dispatch(URL) method occurs in
the MA, if it can listen to the mobility event
by adding the appropriate event listener, i.e.,
mobility listener then the onDispatching()
method will be executed before the MA moves
to the destination. After arriving at the des-
tination, onArrival() and run() will be exe-
cuted sequentially. This kind of event model
is called the delegation event model 12). On
the other hand, Voyager, although it does have
a similar callback model, it also has a rather
complicated event model. We show the event
objects in both systems in Table 3. As we see,
the event objects in each system are much dif-
ferent to each other. Therefore we need to cope
with the event handling and simulate methods
appropriately in the both systems. Here we in-
troduce the general event handling and method
mapping strategy.

Vol. 41 No. 7　　　　Aglet-Voyager Converter: An Approach for Mobile Agent Systems Integration 2031

Table 2 Aglet event model.

Table 3 Event objects.

We can divide methods into override methods
(OMs) and fixed methods (FMs). The methods
which handle events are OMs as a programmer
of MAs will override them for his/her own im-
plementation on how to handle related events.
Programmers created methods are also treated
as OMs. The command-like methods provided
by the systems which cannot be modified are
FMs. OM of an MA system can be simulated
by a sequence of FMs and OMs in its correspon-
dent OM of another system in certain states.
We specify the notational conventions as fol-
lows:

OMx = OMy{seq(FMy,OMy)[,<states>]}
seq(FMx) = seq(FMy,OMy)[,<states>]}

Note that we use the italic style to represent
an instance of an object. The notations of
seq(FM,OM) means a sequence of one or more
FMs and OMs. The <states> is optional. The
notation of x and y represent each different sys-
tem type. For example, if there is the on-
Dispatching() method in Aglet, we do the
same in Voyager by inserting the onDispatch-
ing() method into the vetoableMobilityE-
vent()method in the place where theMobility-
Event.isStarting() AND MobilityEvent.get-
CodeName() == "moving" state is true. The
notation is as follows:
onDispatching() = vetoableMobilityEvent()

{onDispatching(), MobilityEvent.isStart-

ing() AND MobilityEvent.getCodeName() ==

"moving"}
Similarly, dispatch(URL) can be replaced by

moveTo(Address, "run") and the notation is
as follows:

dispatch(URL) = moveTo(Address, "run")

The details of mobility listener related mapping
are shown in Table 4.
Aglet also has the clone event and thus the

clone listener as shown in Table 2. However
Voyager does not have the clone event nor the
clone listener. Hence interoperability problem
raised between these two systems on cloning re-
lated events. To solve this problem, we simulate
the Aglet’s clone() method in Voyager system
by the way as shown in Table 5 for the origin
and clone objects.
The last event in Aglet is the persistency

event. Aglet has two persistency listeners, i.e.,
onDeactivating() and onActivation() but
Voyager has only one persistency related lis-
tener, i.e., databaseEvent(). To do exactly the
same as Aglet, we do the mapping in Voyager
as shown in Table 6.

3.2 Addressing System
In integrating two different types of systems,

we propose a very simple yet sufficient common
address among systems called unified address
for general system identification such as follows:

<system type>:<system address>

The <system type> is the name of a sys-
tem type such as aglet and voyager. The
<system address> is the original address used
in a MA system. Therefore, in Aglet, we extend
its address to

aglet:atp://<host address>:<port no>

In Voyager we extend its address to
voyager:<host address>:<port no>/[<alias>]

The <alias> is optional as a Voyager system
does not have an alias name but a Voyager
object does have an alias name.
The unified address keeps each MA system’s

address features remain in the address and with
it an MA will be able to be dispatched to any
arbitrary MA systems which exist and available

2032 IPSJ Journal July 2000

Table 4 Mobility listener related mapping.

Table 5 Clone listener related mapping.

for the integrated environment.
3.3 Dynamic Conversion Mechanism
To enable an MA to move to another system

of different type, we provide the dynamic con-
version mechanism as mentioned above. The
dynamic conversion mechanism is provided by
the precompiler to an MA source code to enable
it to move to the conversion system first and
then convert itself to the system of the same
type of the destination system and finally move
to the destination system. With this mecha-
nism we provide the means to an MA to move to
another system of different type transparently
just by designating the destination system’s ad-
dress to where it should move to.
The dynamic conversion mechanism includes

the following procedures:
• Self recognition of presence.
This procedure is required to determine
whether or not to move to the conversion
system for conversion. The determination
is achieved by adding fields such as system
type into the MA to enable it to recognize
in which system type it is at present as
shown in Fig. 4. The codes updated by
precompiler are as follows:

if(AGENT TYPE == AGLET && DEST TYPE ==

VOYAGER){
Object[] obj2 =

{mydialog.getGoString(),msg};
msg = new Message("atConverter",

obj2);

itinerary.go("atp://"+

CONVERTER AGLET, msg);

}else if(DEST TYPE == AGENT TYPE){
itinerary.go(getDest(), msg);

}
AGENT_TYPE refers to current MA system
type and DEST_TYPE refers to the destina-
tion system to where it will migrate. There-
fore, by comparing the current system type
and the destination one, the MA can decide
by itself whether or not to go to the con-
version system to get itself to be converted.

• Internal state acquisition.
The MA’s internal state is obtained by
printing all fields in the MA to common
access memory such as files using Java’s
reflection mechanism 13) and object serial-
ization 14). The internal state also includes
input informations from the GUI interfaces
as well. The following shows how the field
in each variable is written into a file.

Class cls = getClass();

Field[] f = cls.getDeclaredFields();

String filename = converter basepath+

”internalstate”;

FileOutputStream fos =

new FileOutputStream(filename);

ObjectOutputStream p =

Vol. 41 No. 7　　　　Aglet-Voyager Converter: An Approach for Mobile Agent Systems Integration 2033

Table 6 Persistency listener related mapping.

Fig. 4 Example fields added by precompiler.

new ObjectOutputStream(fos);

for(int i=0; i¡f.length-1; i++){
int fmodifier = f[i].getModifiers();

String ftype = f[i].getType().getName();

String fname = f[i].getName();

Object fobj = f[i].get(this);

p.writeUTF(ftype);

p.writeUTF(fname);

p.writeObject(fobj);

...

• Inter-system conversion.
To convert the MA into its resemblance in-
stead of using the reverse engineering tech-
nologies 15) such as DejaVu 16), Mocha 17)

and WingDis 18) to get to its source code,
we attach the MA source code to itself.
The reason is that at the moment of this
writing, the reverse engineering technolo-
gies are not 100% reliable in getting the
source code from its byte codes.
To convert the MA source code, at first
we need to attach all the needed source
codes into the MA itself. This is done by
adding fields into the MA to hold the source
codes. These source codes are then saved
as files in the conversion system. Then the
inter-system source codes conversion can be
carry out by providing the files as input to
the converter program. These are done by
executing a shell script in the conversion

system as shown in Fig. 5.
• Controlling GUI objects.
It is also needed to provide the MA with the
capability to control over its GUI objects as
they should not appear at the conversion
system. This could be done by adding the
following codes:

if(IN CONVERTER SERVER)

mydialog.setVisible(false);

else mydialog.setVisible(true);

• Internal state restoring.
In converting the source codes, the con-
verter program will read the serialized in-
ternal state file in exactly the same se-
quence as it was serialized, and will initial-
ize all the fields in the source code of the re-
semblance. After all conversion completed,
compilation is carried out in the conversion
system and the resemblance MA which has
the exactly the same internal state as the
MA just before it was dispatched will be
created and then automatically moved to
the real destination system. The sample
code is as follows:
public void onCreation(Object init) {
if(IN CONVERTER SERVER) initialize();

...

}
public void initialize(){
FileInputStream istream =

new FileInputStream(filename);

ObjectInputStream p =

new ObjectInputStream(istream);

String type = p.readUTF();

String name = p.readUTF();

Object obj = p.readObject();

...

All of the above procedures are done by a
special method called “atConverter()” added
by the precompiler. This method will be called
when the MA arrives at the conversion system.
The input informations, i.e., the destination ad-

2034 IPSJ Journal July 2000

Fig. 5 A shell script used in part of the dynamic conversion mechanism.

Table 7 Message passing in Aglet.

dress and the message are encapsulated and the
sample codes of how the procedures are done
are as follows:

Object[] obj2 =

{mydialog.getGoString(),msg};
msg = new Message("atConverter",

obj2);

itinerary.go("atp://"+CONVERTER AGLET,

msg);

3.4 Inter-agent Messaging
As shown in Table 1, both Aglet and Voyager

have event as one of their communication meth-
ods between objects. Besides event, messag-
ing in Aglet can be achieved by sending a mes-
sage object using methods shown in Table 7 to
the proxy of the Aglet MA. On the other hand
Voyager makes all methods in the MA available
through its proxy using Java’s original method
call.
When an MA sends a message to another

MA which exists in another system of a differ-
ent type, the message should be sent through
the MRAs at the conversion system. Then
the MRAs will forward the message to the
destination MA. The reply of the message
is then forwarded reversely. This messaging
mechanism, called the three-tier communica-
tion mechanism, is required to absorb the dif-
ferences of how both the systems deal with mes-
sages.
We provide the messaging mechanism of

MRAs in supporting messaging between MAs
of different type as shown in Fig. 6. The figure
shows how a message relayed from a Voyager
MA to an Aglet MA. The messengerAgent is
created by the MRA of Aglet system and will

Fig. 6 Inter-agent messaging between systems.

be dispatched to the destination system. In the
destination system it will send the message to
the recipient MA. After receiving a result from
the recipient MA, it will return to the conver-
sion system and return the result to its MRA in
Aglet system. Then the Aglet’s MRA relays the
reply to the Voyager’s MRA to be forwarded to
the Voyager MA.
The Voyager MA sends a messaging request

with the following syntax:
SEND <object type> <the object> TO <host

name> <recipient ID> TYPE <message type>

The <object type> is the name of an object
to be sent in String and the <the object> is
the object itself to be sent. The <host name>
is the destination host name of where the des-
tination MA exits. The <recipient ID> is the
receiving MA’s ID at the destination host. The
<message type> is one of the message type
shown in Table 7. When the <message type> is
equals to “future-type” then the sender MA
may send a query to the MRA of its system
whether the reply is available or not. The query
syntax is as follows:

QUERY isAvailable

And the MRA should reply the query as follows:

Vol. 41 No. 7　　　　Aglet-Voyager Converter: An Approach for Mobile Agent Systems Integration 2035

ANSWER FOR isAvailabe YES/NO

The “YES/NO” means “YES” or “NO.”
The reply message from the MRA to the

sender MA should be as follows:
REPLY <object type> <the object>

3.5 Going Back to Aglet
Here we provide a way for an MA that has

moved from an Aglet system to a Voyager sys-
tem to go back to an Aglet system. It is possible
by utilizing the inter-agent messaging mecha-
nism explained in Section 3.4. After an MA
converted itself from Aglet to Voyager in the
conversion system, the Aglet MA remains in
the conversion system. When the converted
Voyager MA wants to go back to an Aglet
system, it goes first to the conversion system,
writes down its current internal state and then
sends the Voyager’s MRA a message to be for-
warded to the Aglet MA that remains in the
conversion system telling it to restore its inter-
nal state from the new internal state. After the
internal state is restored, the Aglet MA moves
to the desired Aglet system. The Voyager MA
now remains in the conversion system. The
next dispatching from Aglet to Voyager could
be done with the same method by utilizing the
existing Voyager MA in the conversion system.

4. The Prototype System

The MA gets a destination system’s address
and a message from a user through the GUI in-
terface shown in Fig. 7. Let us say the address
is “voyager:zambezi:8000.” After the “go” but-
ton is pressed, the MA will check the address of
the destination system. In this case the desti-
nation is Voyager system, then it automatically
moves to the conversion system and writes its
internal state to a common access memory and
then converts itself from Aglet to Voyager. The
created resemblance in Voyager is then provided
with the internal state. As a result, exactly the
same internal state, including the destination
address and the message, Voyager MA is cre-
ated. Finally the Voyager MA is dispatched to
the real destination system, in this case a host
named “zambezi” at the port number of 8000
and the message is displayed there as shown in
Fig. 8.
We have developed a prototype system that

works for our very simple testing MA for Aglet
to Voyager. The Aglet system used in the pro-
totype system is that of version 1.0.3 Release.
The Voyager system is that of version 2.0 beta

Fig. 7 The input interface of the messaging MA.

Fig. 8 The message displayed.

Fig. 9 The prototype system’s performance.

2. The MA is a simple messaging MA which
is able to move to Voyager system too besides
Aglet system and display a message there from
a user. After the message is displayed, another
user at the destination system could send it
again to either of Aglet or Voyager and display
another message.
The prototype system’s performance is shown

in Fig. 9. The testing mobile agent written
for Aglet system consists of 359 lines and the
byte codes are 11.0 kilobytes in size. The same
mobile agent written for Voyager system con-
sists of 345 lines and the byte codes are 10.9
kilobytes in size. The testing mobile agent for
Aglet was precompiled for the prototype sys-
tem. The resulted mobile agent consists of 1237
lines and the byte codes are 28.6 kilobytes in
size. In the prototype system, the transparent
migration from Aglet to Voyager took 30.27 sec-
onds. Mainly the time consumption takes place
in compilation for Voyager system (12.10 sec-
onds) and the object execution (8.47 seconds)

2036 IPSJ Journal July 2000

as shown in Fig. 9. The dispatching time be-
tween Aglet systems were 1.21 seconds and be-
tween Voyager systems were 5.68 seconds. The
difference is raised because of each system’s per-
formance in moving mobile agents between sys-
tems. Especially the Voyager system seems to
be dealing with many objects for its own system
in the migration. However with the usage of
caches the performance is much improved. The
internal state acquisition time was 0.31 seconds
and the internal state restoring time was 0.12
seconds. The first migration will need conver-
sion time. Therefore to speed up the first time
of Aglet to Voyager migration the autoconfigu-
ration strategy should be used.

5. Related Works

There are two standardizations for interoper-
ability in agent-related systems called MA Sys-
tems Interoperability Facility (MASIF) 19) from
Object Management Group (OMG) and Foun-
dation for Intelligent Physical Agents (FIPA)
specifications 20),21).
MASIF. Proposed to define a common base

for interoperability among various MA sys-
tems written in the same language, but po-
tentially by different vendors and systems
that are expected to go through many revi-
sions within the life time of an MA system.
It is not aiming at language interoperability
and communication interoperability; there-
fore, it does not define standardization of
local agent operations such as agent inter-
pretation, serialization, execution, or dese-
rialization.
MASIF also addresses two interfaces based
on CORBA. The two interfaces are defined
at the agent system level rather than at the
agent level to address interoperability con-
cerns. Hence MASIF does not guarantee
that an MA can migrate and be executed
in other systems of different type. The de-
fined interfaces are as follows:
MAFAgentSystem interface. This in-

terface defines agent operations includ-
ing receive, create, suspend, and termi-
nate.

MAFFinder interface. This interface
defines operations for registering, un-
registering, and locating agents, places,
and agent systems.

FIPA Specifications. FIPA provides speci-
fications of basic agent technologies that
can be integrated by agent systems devel-

opers to make complex systems with a high
degree of interoperability. It defines three
basic technologies that allow:
• The construction and management of
an agent system composed of differ-
ent agents, possibly built by different
developers. This including manage-
ment services, the ontology, configura-
tion and agent system message trans-
port. The agent management specifi-
cation defines open standard interfaces
for accessing agent management ser-
vices

• Agents to communicate and interact
with each other to achieve individual
or common goals. This is addressed by
the Agent Communication Language
(ACL) that is a collection of mes-
sage types, each with a reserved mean-
ing. The ACL provides a high level of
abstraction that separates expressions
from their meaning.

• Legacy software or new non-agent soft-
ware systems to be used by agents.
This is achieved by the using of wrap-
pers.

The specifications do not fully support mi-
gration of agents since the move action is
optional. Therefore no guarantee for agent
execution between systems.

6. Discussion

In Section 3, we have described how to inte-
grate Aglet to Voyager and have also presented
in section 4 the implemented prototype system.
Concerning the event handling, not all event
handling methods can be mapped from one sys-
tem to another since event handling features are
much different among MA systems. However,
there are some common main event handlers in
most of MA systems, e.g., mobility event han-
dler. If there is no corresponding event han-
dler on the destination system, the event han-
dler in the origin system cannot be simulated.
This is due to the mismatched model mapping
problem from both systems. One solution to
this problem is the system extension, e.g., sys-
tem application program interface (API) exten-
sion. However this in not a good solution since
most of MA systems’ source codes are not freely
available.
Since Voyager is a Java-based ORB which is

integrated with CORBA, it has more features
than a pure MA specific system like Aglet. In

Vol. 41 No. 7　　　　Aglet-Voyager Converter: An Approach for Mobile Agent Systems Integration 2037

contrast, Aglet does not support CORBA. Con-
sequently there is a model gap between Voyager
and Aglet. As a result, MA unrelated features
in Voyager are beyond Aglet’s capacity. Hence,
much efforts needed in order to integrate all
possible features that could be used for an MA
of Voyager to Aglet such as migration to a vir-
tual object and group communication.
In order to integrate Concordia into an-

other MA system, agent collaboration function,
the distinctive feature of Concordia, should
be taken into consideration. In contrast, for
Odyssey we should accommodate its multiple
transport mechanisms. Limited documentation
on these two MA systems prevents detailed dis-
cussion on how to integrate them into Voyager
or Aglet.
In the world of distributed computing,

Java specific distributed computing technolo-
gies such as HORB 22) and the common Object
Request Brokers (ORBs) such as CORBA 23)

and DCOM 24) enable creation of remote ob-
jects, remote method calls and objects passing.
However the implementations of such objects in
the servers are required and must be on hand
at the servers before accessing the objects. On
the other hand, our proposed system enables
transformation of MA from one system to an-
other transparently and dynamically without
the need of reprogramming the MA into the
other system. Moreover the conversion system
can be integrated as a CORBA service to enable
a more flexible conversion service in distributed
environment.
Recently Sun Microsystems has introduced

Jini technology 25), a new network-centric ar-
chitecture which allows clients and services to
easily connect and interact with each other
over the network. The conversion system can
become a Jini technology service by adding
the Jini software infrastructure to the system.
Therefore, the system can provide a more flex-
ible service to integrate MA systems in Jini en-
vironment.

7. Conclusion

In this paper, two converter-based mo-
bile agent systems integration strategies called
dynamic conversion and autoconfiguration
strategies have been proposed. The required
technologies to realize the integration have also
been addressed.
As the implementation example of the pro-

posed dynamic conversion strategy, a prototype

system of integration of two well known Java-
based mobile agent systems called Aglet and
Voyager have been implemented. The proto-
type system has successfully provided a trans-
parent agent migration from the Aglet system
to the Voyager system based on the proposed
dynamic conversion strategy.
Although there is a great deal of work left to

provide a perfect conversion among many mo-
bile agent systems, the converter approach has
been clarified to be able to provide mobile agent
systems integration with no system change and
minimal administration cost.

Acknowledgments This research was sup-
ported by the Research for the Future Pro-
gram of Japan Society for the Promotion of
Science under the Project “Advanced Multi-
media Content Processing (Project No. JSPS-
RFTF97P00501)”.

References

1) Powell, M. and Miller, B.: Process Migration
in DEMOS/MO, Proc. 9th ACM Symposium
on Operating Systems Principles, pp.110–119
(1994).

2) Jul, E., Levy, H., Hutchinson, N. and Black,
A.: Fine-grained Mobility in the Emerald Sys-
tem, ACM Trans. Comput. Syst., Vol.6, No.1,
pp.109–133 (1988).

3) Stamos, J. and Gifford, D.: Remote Evalua-
tion, ACM Trans. Prog. Lang. Syst., Vol.12,
No.4, pp.537–565 (1990).

4) Gosling, J., Joy, B. and Steele, G.: The
Java Language Specification, Addison-Wesley
(1996).

5) Lange, D.B., Oshima, M., Karjoth, G. and
Kosaka, K.: Aglets: Programming Mobile
Agents in Java, Worldwide Computing and
Its Applications, Lecture Notes in Computer
Science, Vol.1274, pp.253–266, Springer-Verlag
(1997).

6) ObjectSpace: ObjectSpace Voyager Technical
Overview.
http://www.objectspace.com/developers/
voyager/white/index.html/
Voyager TechOview.pdf.

7) Glass, G.: ObjectSpace Voyager – the Agent
ORB for Java, Worldwide Computing and Its
Applications (1998).

8) Wong, D., Paciorek, N., Walsh, T., DiCelie,
J., Young, M. and Peet, B.: Concordia: An In-
frastructure for Collaborating Mobile Agents,
Mobile Agents, Lecture Notes in Computer
Science, Vol.1219, Springer-Verlag (1997).

9) General Magic: Odyssey.
http://www.generalmagic.com/technology/

2038 IPSJ Journal July 2000

odyssey.html.
10) Chess, D., Harrison, C. and Kershenbaum, A.:

Mobile Agents: Are They a Good Idea?, Mobile
Object Systems: Towards the Programmable
Internet, Lecture Notes in Computer Science,
Vol.1222, pp.25–45, Springer-Verlag (1997).

11) Pham, V.A. and Karmouch, A.: Mobile Soft-
ware Agents: An Overview, IEEE Communica-
tions Magazine, Vol.36, No.7, pp.26–37 (1998).

12) Oshima, M. and Karjoth, G.: Aglets Specifi-
cation (1.0).
http://www.trl.ibm.co.jp/aglets/
documentation.html.

13) Sun MicroSystems: Java Core Reflection
Specification.
http://splash. javasoft.com/products/jdk/1.1/
docs/guide/reflection/spec/
java-reflectionTOC.doc.html.

14) Sun MicroSystems: Java Object Serialization
Specification.
http://splash.javasoft.com/products/jdk/1.1/
docs/guide/serialization/spec/
serialTOC.doc.html.

15) Dyer, D.: Java Decompilers Compared, Java
World (1997).

16) Innovative Software: OEW for Java.
http://www.isg.de/OEW/Java/.

17) Vliet, H.V.: Mocha, the Java Decompiler.
http://www.brouhaha.com/˜eric/computers/
mocha.html.

18) WingSoft: WingDis, the Java Decompiler.
http://www.wingsoft.com/wingdis.shtml.

19) Milojicic, D., Breugst, M., Busse, I., Campbell,
J., Covaci, S., Friedman, B., Kosaka, K.,
Lange, D., Ono, K., Oshima, M., Tham, C.,
Virdhagriswaran, S. and White, J.: MASIF:
The OMGmobile agent system interoperability
facility, Mobile Agents, Lecture Notes in Com-
puter Science, Vol.1477, pp.50–67, Springer-
Verlag (1998).

20) Foundation for Intelligent Physical Agents
(FIPA): “FIPA 97 specification”.
http://www. cselt.stet.it/fipa/spec/fipa97
/fipa97.htm (Oct. 1997).

21) Foundation for Intelligent Physical Agents
(FIPA): “FIPA 98 specification”.
http://www. cselt.stet.it/fipa/spec/fipa98
/fipa98.htm (Oct. 1998).

22) Hirano, S.: HORB: Distributed Execution
of Java Programs, Worldwide Computing and
Its Applications, Lecture Notes in Computer
Science, Vol.1274, pp.29–42, Springer-Verlag
(1997).

23) Object Management Group: The Common
Object Request Broker: Architecture and Spec-
ification 2.2.
http://www.omg.org (1998).

24) Brown, N. and Kindel, C.: Distributed Com-
ponent Object Model Protocol – DCOM/1.0,
Internet Draft.
http://ds1.internic.net/internet-drafts/
draft-brown-dcom-v1-spec-01.txt (1996).

25) Waldo, J.: Jini Architecture Overview.
http:// www.sun.com/jini/whitepapers
/architecture.html.

(Received September 2, 1999)
(Accepted May 11, 2000)

Djoni Tjung received his
B.E. and M.E. degrees from Os-
aka University, Osaka, Japan,
in 1998 and 2000, respectively.
Since April 2000, he is a re-
search engineer of Hitachi Co.,
Ltd. His current research inter-

ests include mobile agents and distributed sys-
tems.

Masahiko Tsukamoto re-
ceived his B.E., M.E., and Dr.E.
degrees from Kyoto University,
Kyoto, Japan, in 1987, 1989,
and 1994, respectively. From
1989 to 1995, he was a research
engineer of Sharp Corporation.

In March 1995, he joined the Department of
Information Systems Engineering of Osaka Uni-
versity as an assistant professor. Since 1996, he
has been an associate professor in the same de-
partment. He is a member of eight learned soci-
eties, including ACM and IEEE. His current re-
search interests include mobile computing and
augmented reality.

Vol. 41 No. 7　　　　Aglet-Voyager Converter: An Approach for Mobile Agent Systems Integration 2039

Shojiro Nishio received his
B.E., M.E., and Dr.E. degrees
from Kyoto University, Kyoto,
Japan, in 1975, 1977, and 1980,
respectively. From 1980 to
1988, he was with the Depart-
ment of Applied Mathematics

and Physics, Kyoto University. In October
1988, he joined the faculty of the Department
of Information and Computer Sciences, Osaka
University, Osaka, Japan. Since August 1992,
he has been a full professor in the Department
of Information Systems Engineering of Osaka
University. He has been serving as the di-
rector of Cybermedia Center of Osaka Univer-
sity since April 2000. His current research in-
terests include database systems, multimedia
systems, and distributed computing systems.
Dr. Nishio has served on the editorial board
of IEEE Transactions on Knowledge and Data
Engineering, and is currently involved in the ed-
itorial boards of Data & Knowledge Engineer-
ing, New Generation Computing, International
Journal of Information Technology, Data Min-
ing and Knowledge Discovery, and The VLDB
Journal. He is a member of seven learned soci-
eties, including ACM and IEEE.

