TRERILBE A 22451 (P IK 4 £ 2 H A2

1-173

Evaluation of LOTOS Execution System

4V—56

with a OSI TP protocol specification

Shingo NOMURA!, Takashi TAKIZUKA', Toru HASEGAWA' and Ron GREVE'

fKDD R& D Laboratories

1. Introduction

LOTOS! is a Formal Description Technique
standardized by ISO. It is useful for specifying
distributed systems, such as OSI. Actually some of
the OSI protocols have already been specified in
LOTOS. When implementing these OSI protocols,
one can expect that the use of tools will reduce the
implementation costs. We have developed a
LOTOS Execution System!?! which can derive an
implementation from a specification written in
LOTOS. To verify that the system is applicable to
build an actual communication system, we have
‘evaluated the system by applying it to a LOTOS
specification of part of the OSI Transaction
Processing (TP) protocol. It is proved that the
system is able to generate a correct program for this
OSI TP protocol, and that the implementation costs
are smaller than those in case of manual
programming. This paper describes the results of
our implementation experiment in detail.

2. LOTOS Execution System

Our system consists of a translator from LOTOS
specifications to C programs, and a scheduler
library used for LOTOS process execution. Since
the translator transforms a LOTOS behaviour
expression into a sequence of scheduler library
calls, the generated program closely resembles the
architecture of the original LOTOS specification.
The scheduler library executes LOTOS processes in
parallel, and provides LOTOS basic functions such
as synchronization, choice and disabling. At the
moment, the scheduler library is designed for
execution on the VAX/VMS operating system.

A restriction of our system is that there is almost
no support for data type compilation, although data
type descriptions, defining sorts and operations, are
included in the specification.

3. Implementation

In order to evaluate our system, we translated a
LOTOS specification of part of the OSI TP protocol.
After translation, the generated code was
complemented with manually written code in order
to derive a complete implementation. Manual
coding included both the coding of the data type

tt University of Twente

operations and the interface with the environment.
3.1 OSI TP protocol and its LOTOS specification

The OSI TP protocol® is one of the application
layer protocols of the OSI Reference Model. It is
used to support transaction processing in a
distributed environment, and allows
communication between more than two partners.

The LOTOS specification¥! is developed within
Lotosphere, one of the European ESPRIT II
projects. Its structure conforms to the ISO
Application Layer Structure and its size is 3,870
lines: 2,630 lines data type part and 1,240 lines
behaviour part. Basically, the following Functional
Units (FUs) of OSI TP are specified;

@ Kernel FU (without error and abort services),

® Commit FU (without rollback and recovery),

@ Shared control FU.
Approximately, the protocol deéscribed in this
specification corresponds to a state machine with 19
states and 28 input primitives.
3.2 Translation

Our translator requires the user to modify the
specification, before it can be translated. Since the
translator does not handle any axioms for data type
operations, all axiom descriptions have to be
removed from the specification. Also some
operation names have to be redefined in order to
resolve naming ambiguities. In our case these
modifications reduced the specification from 3,870
to 1,611 lines: 381 lines data type part and 1,240
lines behaviour part.

As a result of translating the specification, a C
program is generated which consists of 4,407 lines
(see Table 1).

Table 1 implementation result

input specification 1,611lines
generated code 4,407 lines
manual coding operations 2,582 lines
interface 723 lines

3.3 Manual coding
(1) Coding of data type operations

For each data type operation, the user has to
implement the body of a function whose prototype is
generated by the translator from its LOTOS

LOTOSETZ+ BW-0SIF S v ¥ 2 Y3 »r7u b a)LOERER

A BEE, #E £¥, ESJI ¥, Ron GREVE

EREEBFEGEA S AT, University of Twente



1-174

description. Our system uses so called descriptors
(C structures) for representing data values 2,
These descriptors are a key feature for the user to
implement operations.

‘We needed 2,582 lines of C code (see Table 1) for
implementing 203 operations. Although the size of
the code is very large, its complexity is relatively
low. The operations can be thought of as grouped
into 39 categories. Operations in each category
have a similar structure. For example, there are 69
operations to identify the various service primitives
(e.g. IsTP__DATAreq) and their structure is almost
the same.

(2) Coding of interface

The implementation has to run as a separate
process on VAX/VMS and has to communicate with
its environment via mail boxes. In LOTOS, the
ispecification communicates with its environment
‘via external gates. For each of these external gates,
our system generates a prototype function, of which
‘the body has to be coded by the user. The ’gate
ifunctions’ read from and write to mail boxes and
‘convert service primitives into an internal
representation using descriptors and vice versa. In
order to handle the mail box interface easily,
primitive routines for using a mail box have been
prepared in our library.

The total number of lines necessary to describe
the interface was 723 lines (see Table 1),

4. Evaluations
(1) Program execution experiment

In order to check the correct working of our TP
implementation (TP Entity), we built a simple TP-
user program for sending service primitives to and
receiving service primitives from the TP Entity.
Another program called lower layer simulator was
built for conveying the output of one TP Entity to
another (see Fig. 1).

l TP-user I l TP-user I
interface interface
TP Entity TP Entity
interface interface

¥ % ¥ %

* mail box
| lower layer simulator l

Fig. 1 Execution test

The implementation is evaluated using VAX
station 3100. In the configuration shown in Fig. 1,
we executed the TP service primitive sequence as
listed below :

TP-BEGIN-DIALOGUEreq/ind, TP-DATAreg/ind,
TP-DEFERRED-END-DIALOGUEreq/ind,
TP-COMMITreg/ind,
TP-CONTINUE-COMMITreq,

TP-COMMIT-RESULTind,
TP-DONEreq, and TP-COMMIT-COMPLETEind.

The execution time was 750 ms and 144 LOTOS
processes were created.

Since 1,400 LOTOS processes can exist
simultaneously on our system!?! and 86 processes
are created for each transaction branch, 14 trans-
action branches can be processed at the same time.
(2) Implementation costs

Table 2 shows the costs of the implementation
experiment. This experiment was performed by a
novice user of our system, who is familiar with
LOTOS, the OSI TP protocol and its specification.
In case the user knows our system well, costs of both
manual coding and debugging are likely to be
decreased.

It is thus possible for a novice user of our system
to implement the TP protocol within 32 days. Not
so much effort was required from the user.
Although the user needed to write code for data
type operations and for the interface with the
environment, this task was relatively small. Also
the similarity between the architecture of the
generated code and that of the specification helped

the user to debug the code.
Table 2 Implementation costs
training 5 days
modification of specification 4 days
manual coding operations 8 days
interface 5 days
debugging 10 days

5. Conclusion

This paper presented the result of the evaluation
of our LOTOS Execution System. The result shows
that the system can generate a program for an
actual communication system like OSI TP, and that
this program can execute correctly after some
additions to the code.

The implementation costs were small enough to
conclude that our system is suitable for prototyping.
For a novice user of our system it is possible to
implement the OSI TP protocol within 32 days.

The authors would like to thank Dr. K. Ono,
Director, Dr. Y. Urano, Deputy Director of KDD
R&D Labs, Dr. K. Suzuki, Manager of OSI Systems
Group and Mr. K. Konishi, senior research engineer
of KDD R&D Labs, for their helpful suggestions.
References
[1]: ISO 8807, “LOTOS - A formal description technique based
on the temporal ordering of observational behaviour”, Feb.
1989.

[2): S. Nomura, T. Takizuka, T. Hasegawa, “Preliminary
Evaluation of LOTOS Translation Method”, Conf. of IPSJ, 6L-
09, Mar. 1992.(in Japanese)

[3]: DIS 10026-2, “Information technology - Open Systems
Interconnection - Distributed transaction processing - Part 3:
Protocol specification”, Mar. 1990.

[4]: R. Greve, 1. Widya, “TP Protocol Version 2.0: a two-way
synchronization version”, Lotosphere project ESPRIT 2304
Lo/WP3/T3.1/UT/N0016/V3, UT, PTT Research, 1992,



