TRIRILTE A5 B 4 £ 2 FH kS

1—163

Synthesis Algorithm of Protocol Specification with Message Collision for Two Processes

4V —1

Hirotaka IGARASHI, Yoshiaki KAKUDA and Tohru KIKUNO

Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka University

1 Introduction

Along with the development and enrichment of communication ser-
vices in ISDN and IN, it is strongly demanded to realize highly re-
liable communication protocols efficiently. Protocol synthesis is to
produce communication protocol specifications and it is one of the
most important techniques to be developed [1, 3, 4].

The principle of protocol synthesis is illustrated in Figure 1 : Given
a service specification representing relations on primitives between a
user in a high layer and a process in a low layer, a protocol speci-
fication representing relations on messages between processes in the
low layer is derived. Interfaces between these layers are called Service
Access Points (SAPs).

In the previous algorithms for protocol synthesis, protocol specifi-
cations with message collisions can be derived but they cause protocol
errors called unspecified receptions.

This paper proposes an automated synthesis algorithm of a proto-
col specification from a service specification such that the synthesized
protocol specifications are free from protocol errors of unspecified re-

ceptions caused by message collisions.
2 Protocol Synthesis

A service specification describes primitive’s execution sequences be-
tween users and processes through SAPs. In this paper, the number
of processes is limited to two. The service access points are thus
denoted by SAP1 and SAP2.

Service specifications are modeled by Finite State Machine (FSM)
as shown in Figure 2. In this figure, an oval represents a state, an
arrow represents a transition between states and a label of the arrow
represents a primitive. State number 1 is an initial state.

Primitives s associated with SAP1 are specified as follows: If s is
delivered from a user to a process through SAP1 then s is denoted by
s1), and if s is delivered from a process to a user through SAP1 then
s is denoted by s, 1. Primitives s associated with SAP2 are done in
a similar way.

A protocel specification consists of a number of processes cooper-
ating by sending and receiving messages. Each process is modeled
by FSM as shown in Figure 3. In the figure, ! represents sending a
message and ? represents receiving a message. A message collision
occurs between two processes by concurrently sending messages from
process] to process2 and from process2 to processl. Figure 4 shows a
sequence chart which represents a message collision. A message colli-
sion due to messages Rel.reql and C_resp2 is denoted by crossing of
two dotted lines. Generally, primitives s;] and so| have a possibility
to induce a message collision if they are concurrently delivered from
users to processes. These primitives are called MC (Message Colli-
sion) primitives. This paper adopts the following approach to MC
primitives: If the priority of s;| is higher than that of 55|, then any
message induced by s; | reaches SAP2 and vice versa. If the priorities
of 51| and s} are the same, neither messages reach any SAPs.

The Protocol Synthesis problem (called PS problem) to be solved
in this paper is defined as follows.

Input: A service specification and priorities between primitives.
Output: A protocol specification with message collisions.

Conditions: Precedence relation on transitions in the service spec-
ification is preserved in the protocol specification. Additionally
there is no unspecified receptions in the protocol specification.

3 Proposed Synthesis Algorithm

This section proposes an algorithm to solve the PS problem. The

proposed algorithm consists of the following four steps.

[Stepl] Add transitions for message collisions to a given service
specification.

[Step2] Project the service specification refined by Stepl to two
service specifications with respect to SAP1 and SAP2.

[Step3] Apply transition synthesis rules [2] to service specifications
with respect to SAP1 and SAP2, and obtain protocol specifica-
tions with respect to SAP1 and SAP2.

[Step4] Remove ¢ transitions from the protocol specifications.

In the algorithm, Stepl finds MC primitives and adds transitions
for deleting unspecified receptions caused by message collisions.

The conditions C1 through C3 for finding MC primitives are shown
below(See Figure 5). In Fig. 5, w, w1, w2, u,v,u'and v' are states
and y,¥',s; §, s} 1,5} land s | are primitives in the given service
specification.

Here, s | represents the first primitive that is associated with
SAPj(# 1) and delivered from a user to a process, and that appears
after s; |. s | represents the first primitive that is associated with
SAPi(# j) and delivered from a user to a process, and that appears
after s; 1.

o Condition C1: There exist s;] and s;-l.

¢ Condition C2: There exists a state (say w), from which » and
u' are reachable.

¢ Condition C3: There exist y and 3’ whose origin states are both
w, and y = g} or w1 and ¥’ = y;l or ¥}7 (i # 7).

If conditions C1-C3 are satisfied, s;| and 531 are determined as MC_
primitives.

Under these conditions, transitions for message collisions are added
to service specification as follows. This procedure is divided into three

cascs.

1—164

¢ Case 1 (The priority of si| is higher than that of 53‘1 and there
does not exist any other s;| in the path from w to v'.)
For each state (let it be z) in the path from w2 to ;"] , if there
are no outgoing transitions s;} from z ,then insert a transition
labeled Li from z to v.
For each state (let it be y) in the path from w1l to Y1, insert a
transition labeled Lj from y to y itself.

Case 2 (The priority of ;1 is higher than that of :;-1 and there
exists another s; | in the path from w to v'.)

This case is similar to Case 1 except that messages substituted
with Li and Lj are different each other for s;] and s;].

Case 3 (The priorities of 5;{ and s;} are the same.)

For each state (let it be z) in the path from w2 to s}, if there
are no outgoing transitions s} from z, then insert a transition
labeled Li from z to the initial state.

For cach state y in the path from wl to s}'l, insert a transition
Jabeled Lj from y to the initial state.

Explanations of Step2,Step3 and Step4 are omitted due to limita-
tion of pages. Refer to [2] for their details.

Figure 3 shows a protocol specification synthesized from the service
specification in Figure 2 using the proposed algorithm.

Time complexities of this algorithm for each steps are evaluated as
follows: Let n represent the number of all states and 7 represent the
number of all transitions in the given service specification.

Stepl is searching MC primitives and adding transitions for mes-
sage collisions. For searching MC primitives, it takes at most T? times
to confirm Condition C1 and it takes at most T times to confirm Con-
ditions C2 and C3. For adding transitions for message collisions, it
takes O(T?n) times. The complexity of Stepl is thus evaluated as
O(T? +T?n) times. Step2 is projection of service specification to two
service specifications with respect to SAP1 and SAP2. Projection
is done for each transition. The complexity of Step2 is thus eval-
uated as O(27) times. Step3 is application of rules to two service
specifications with respect to SAP1 and SAP2. The complexity of
Step3 is evaluated as O(2T) times. Step4 is removal of ¢ transitions
in the protocol specification. The complexity of Step4 is evaluated as
O(T™), but it could be decreased to O(T) in practical cases.

4 Conclusions

This paper has proposed a synthesis algorithm of a protocol speci-
fication from a service specification. The characteristics of this algo-
rithm include that there are no unspecified receptions caused by mes-
sage collisions in the synthesized protocol specification. Therefore,
more reliable protocol specifications are efficiently produced by this
algorithm than those by the previous synthesis algorithms 1, 3, 4].
The formal proof of correctness is now extensively being studied.

References

[1) Peil-Ying M. Chu and Ming. T. Liu: “Protocol synthesis in
a state transition model,” Proc. COMPSAC’88, pp.505-512
(Oct. 1988).

{2] Hirotaka Igarashi, Yoshiaki Kakuda and Tohru Kikuno: “Syn-
thesis of protocol specifications with recovery function from
service specifications,” IEICE Japan, Tech. Group Paper
SSE92-10 (May 1992), in Japanese.

[3] Kassem Salch:“Auntomatic synthesis of protocol specifications
from service specifications,” Proc. Int’L. Phoenix Conference on
Computers and Communications, pp.615-621 (March 1991).

[4] Kassem Saleh and Robert L. Probert :“Synthesis of commu-
nication protocols: Survey and assessment,” IEEE Trans. on
Computers, Vol.40, No.4, pp.468-475 (April 1991).

Input . +<—— Service

specification

Output

t— Protocol
specification

Rel_resp2 !
Rel_ind2T confit -

X
x = Rel_req1!

Figure 2 Example of a service specification

C_reql/la 7a

Rel, 4l
Rel_cont1 el_res2/d

C_ind2

C_res2/lb

% X
x = Rel_req1/lc

Process 1

Process 2

Figure 3 Example of a protocol specification

SAP1 SAP2
C_reqt y D) y
"""""" C_ind2
. s
Rel_reql C resp2
B T
C.oohf1 '_':-f.'.‘\ Rel_ind2 v v
: -tk > D
Rel_resp2 . 0 :
. - s7L
Rel_conft| _..et”” € gﬁ i ©) RS
(_.‘.' v
l l gsl l s™iL
Rel_req1>C_resp2 Sii>Sju

Figure 5 Conditions for findin

Figure 4 A sequence chart LioT
MC primitives

representing a message
collision

