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Efficient Algorithms for Edge-Coloring Partial k-Trees

X. Zhou, S. Nakano, H. Suzuki and T. Nishizeki
Tohoku University

Many combinatorial problems can be efficie

Abstract
ntly solved for partial k-trees. The edge-coloring problem is -

one of a few combinatorial problems for which no efficient algorithms have been obtained for partial k-trees.
This report presents two algoritms. One decides the chromatic index of a given partial k-tree in linear time.

The other optimally edge-colors a given partial k-tree G in O

G. In the report k is assumed to be a constant.

1. Introduction

This report deals with the edge-coloring problem which
asks to color, using a minimum number of colors, all edges of
a given graph so that no two adjacent edges are colored with
the same color. The chromatic index x'(G) of a graph G is
the minimum number of colors used by an edge-coloring of G.
This problem arises in many applications including various
‘scheduling and partitioning problems {FW]. Since the edge-
coloring problem is NP-complete [Ifol], it seems unlikely that
there exists a polynomial-time algorithm for the problem on
general graphs. On the other hand, it is known that many
combinatorial problems can be solved very efliciently, say in
linear time, for partial k-trees [TNS, ACPD, AL, C]. Such
a class of problems has been characterized in terms of “for-
bidden graphs” or “extended monadic logic of second order”
[TNS, ACPD, AL, C]. The edge-coloring problem does not
belong to such a class, and is one of a few well-known prob-
lems for which no efficient algorithms of low complexity order
have been obtained for partial k-trees. Even a polynomial-
time algorithm has not been obtained for the edge-coloring
problem of partial k-trees until recently Bodlaender give a
polynomial-time algorithm of high complexity order [Bod].
The complexity of his algorithm.is O(|V|A’m+”), where A
is the maximum degree of G. Note that the maximum degree
A is not a constant in general.

In the report we give two algorithms. One determines
the chromatic index x'(G) of a given partial k-tree G in linear
time. The other finds an edge-coloring of G using x'(G)
colors in O(|V|?) time.

2. Terminology and definitions

In this section we give some definitions. Let G = (V, E)
be a given graph with vertex set V and edge set E. In this re-
port we consider only simple graphs, which have no multiple
or self-loop edges. A partial k-tree is defined as follows.

Definition 2.1 The class of k-trees is defined recursively as
follows.
1. A complete graph with k vertices is a k-tree.
2. IfG = (V,E) is a k-tree, v1,v2, ..., Vi induce a com-
" plete subgraph of G with k vertices, and w € V, then
H=Vu{w},EU {(vi,w)|t <i<k}) isak-tree.
3. All k-trees can be formed with rules I and 2.
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([V|?) time, where V is the set of vertices of

Definition 2.2 A graph is a partial k-tree if it is a subgraph
of a k-tree.

We denote by d(v) the degree of vertex v € V. The
maximum degree of G is denoted by A(G) or simply by A.
The number of vertices which have degree A and are adja-
cent with vertex v is denoted by na(v). An edge joining
vertices u and v is denoted by (u,v). The graph obtained
from G by deleting an edge (u,v) is denoted by G — (u,v).
Similarly define G + (u,v). An edge (u,v) of G is defined to
be eliminable if

d(u) + na(v) < A
na(v) =1

when d(u) < A; and
when d(u) = A.

3. Edge-coloring algorithms

Hoover [Hoo] has claimed that the chromatic index of
partial k-trees can be determined in linear time. Ifowever
his proof is incorrect. Indeed his result is based on “Theorem

4.5" in [Hoo}: if the chromatic index of a general graph G is
A(G) + 1 then :
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In fact this “Theorem” is incorrect; there is a counterexample
as follows. Let G be a graph obtained from K7, a complete
graph of seven vertices, by inserting seventy vertices on an
arbitrary edge e of 7. Then A(G) = 6, |V| = 77 and
|El = 91. Clearly x'(G) = A(G)+1 = 7 since x'(A'7—¢€) = 7.

Therefore V1. AG

contrary to the “Theorem.” This flaw comes from a misin-

. terpretation of a result on “critical graphs” in [FW].

We fix the flaw and give correct algorithms. We first
give a lemma.

Lemma 3.1
A > 2k.

Proof. Since G is a partial k-tree, G has a vertex of
degree at most k. Let S be the set of such vertices, and let
G' = G — S be the graph obtained from G by deleting all
vertices in S. Since G is also 2 partial k-tree, G’ has a vertex
v of degree at most k. Since the degree of v was at least k41
in G, v was adjacent with a vertex « € §in G. Therefore
we have na(v) < k, and hence d(u) + na(v) < 2k. Thus the
edge (u,v) is eliminable. Q.£.D.

A partial k-tree G has an eliminable edge if

The following lemma has been known [TN,NC].
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Lemma 3.2 If (u,v) is an eliminable edge of a simple graph
G, then

Y'(G) = max{A(G), X (G — (w,v))}. 0

We then have the [ollowing theorem.

Theorem 3.3 If G is a partial k-tree and A(G) 2 2k, then
X'(G) = A(G).

Proof. By Lemma 3.1 G has an eliminable edge. Delete
from G eliminable edges e, e2,-- -, ¢; sequentially until ¢ =
G - {e,€2,---,¢;) satisfies A(G') = A(G) — 1. Then
Y(G) < A(G) + 1 = A(G) by Vizing’s theorem [FW,
NC). By Lemma 3.2 x'(@) = max{A(G), x'(G")}. Therefore
X'(G) = A(G). Q.£.D.

Lemma 3.4 The edge-coloring problem can be solved in
O(|V]) time using O(|V]) space for a partial k-tree G if
A(G) < 2k.

Proof. Bodlaender [Bod] has given an algorithm to solve
the edge-coloring problem for a partial k-tree G in O({V]-
Agz(k“)) time using space of the same order. Since A(G) <
2k, the complexity is O(|V]). Q.£.D.

We now have the following theorem.

Theorem 3.5 The chromatic index of partial k-trees can
be determined in linear time.

Proof. We can compute the maximum degree A(G) of a
given partial k-tree G in linear time. If A(G) > 2k, then
X'(G) = A(G) by Theorem 3.3; otherwise, x'(G) can be
determined in linear time by Lemma 3.4. Q.£.D.

The following Lemma 3.6 is known [TN, NC].

Lemma 3.6 Let G be a graph and (w,v) be an eliminable
edge in G. If an edge-coloring of G — (u,v) with A(GY colors
is given, then an edge-coloring of G with A(G) colors can be
obtained in O(|V|) time using O(|E|) space.

We now give an algorithm which edge-colors a partial
k-tree G with x'(G) colors.

Procedure Color(();

begin

1 if A(G) < 2k then

find an edge-coloring of ¢ using x'(G') colors by
Bodlaender’s algorithm { Lemma 3.4 }

©

3 else { A(G) 2 2k)

4+ begin

s Gh=G,

¢ while A(G') = A(G) do

7 begin

8 find an eliminable edge (u,v) in G%;

9 G'=G" - (u,v); {delete (u,v)}
10 . push (u,v) on the top of stack §

11 end;

12 {A(G)y=A(G)-1)

13 color G' with A(G) = A(G") + 1 colors;
14 while stack § is not empty do

15 begin

16 pop up an edge, say (u,v), from S;

17 G':= G+ (u,v);

18 update the coloring of (/' from that of ¢/ — (u,v)
{ Lemma 3.6 }

19 end

20 end

end;

Line 2 in the algorithm above can be done in O(]V|) time
by Lemma 3.4. Finding eliminable edges in Line 8 can he
done total in O(|V]||E]) time [TN, NC]. Since |E| < k|V}, it
can be done in O(|V|?) time. Terada and Nishizeki [TN] gave
an algorithm to edge-color a general graph G = (V, E) with A
or A+1 colors in O{| E[|V]) tine. Gabow et al. improved the
time complexity to be O(JEl/|V|log|V]) [GNKLT]. There-
fore Lines 13 can be done in O(|V}\/|V]log|V]) time. By
Lemma 3.6 Line 14-19 can be done in O(JV[?) time. Thus
the total running time of the algorithm is O(|V|*). Hence we
conclude:

Theorem 4.7 The edge-coloring problem can be solved in
O(|V]?) time for a partial k-tree (i if k is a constant.
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