17 PR 2 2 44] (T IK 4 40D &l k2

4—133

The Synchronization Mechanisms of The Parallel

2H—4

Object-Oriented Programming Language WARASA

Yun JIANG, Akifumi MAKINOUCHI

Dept. Computer Sci. & Comm. Eng., Kyushu University

1 Introduction

We are developing an object oriented programming lan-
guage called WARASA for writing - parallel object ori-
ented program on Mach based shared memory multiproces-
sors[JIA91}.

WARASA is an extension to C++[STR86] by adding ca-
pability of parallelism. It attempts to combine the parallel
mechanism based on shared memory multiprocessor with the
object oriented paradigm, so as to allow programmers for im-
plementing multithread programs and the interthread com-
munication directly and easily. ‘

In this paper, we describe one of the important features of
WARASA, that is the synchronization abstraction.

2 Synchronization Mechanism in WA-
RASA

The unit of parallel excution in WARASA is an object
called autonomous object. When these autonomous objects
run in parallel on different threads, they need synchroniza-
tion and cooperation, for which some mechanism must be
provided.

WARASA provides objects called synchronous objects for
supporting synchronization and cooperation basically. The
synchronization mechanism that supports the object synchro-
nization must be simple on one hand, but efficient on the
other hand.

In order to achieve this goal, three versions of synchroniza-
tion mechanisms have developed in WARASA.

3 The Three Versions

In this scction, the definitions and functions of three ver-
sions will be described using some examples.

3.1

Simple style version uses the primitive synchronous mecha-
nism of WARASA. The private data in a synchronous object
only includes the condition variables whose type is system
dependent. The methods definited for the object are simple
synchronization operation without any codition judgment. If
it is used for implementing synchronization in an application,
users have to design another object called exclusive object in
which shared variables are encapsulated, and both types of
the objects must be used in pairs.

For example, in the consumer and producer problem, a
synchronous class called push_pop_condition class is defined
as follows:

Simple style

sync class push_pop.condition{
private: '

The Synchronization Mechanisms of A Parallel Object-Oriented
Programming Language WARASA

Yun JIANG, Akifumi MAKINOUCHI

Faculty of Engineering, Kyushu University

condition_t push_available_sig;
condition_t

public:

pop.available_sig;

push_pop_condition();

“pusk_pop.condition();

void wait_pop_available();

void wait_push_availabdle();

void make_pop_available();

void make_push_available();
}

Further an exclusive object called stack has t6 be defined.
When the stack is concurrently used by autonomous ohjects
called consumer and producer, in order that these objects be-
have cooperatively, both push_pop_condition object and stack
object have to be used in pairs. In order to pop data from
the stack, the consumer program has to be written as follows:

pop-x = stack_0ID ~> stak _pop();

while (pop.r == 0) {

condition _0ID ~> wait_pop.avaiable();
pop.r = stack_0ID -> pop();

3 .
condition_0ID -> make_push_avaiable();

The synchronization process is depicted in Figure 1.

sxc! object

dute object sule object asto object

broducer
:g;;J

sync object

sush

e — 5 1 P |
""""""""""" g—a ignal_coaswmer

(7]

!rIllNl
IS\
El_‘)"”' . signal_produces,

L e

wait_production

¥
lock []

I\
: sunlock

Figure 1. A synchronous Object in Simple Style Version

In the simple style version, the action on every object is
very primitive, but a pair of a synchronous object and an
exclusive object have to be always used. In addtion, a lot of
locking/unlocking operations have to be executed.

3.2 Mixed style

We provide a mixed style version so as to improve the per-
formance of the version mentioned above. In order to reduce
the locking/unlocking operations, we combine the simple syn-
chronous object with a simple exclusive object, to make other
complex synchronous object in the mixed style version.

The private data of a synchronous object of this style is

4—134

both condition variables and shared variables. Therefore, the
operations on the condition variables and the ones on shared
variables are also mixed in order to be the operations for one
object. For example, a synchronous object called fork used
in dining philosophers’ problem is defined as follows;

sync class fork{
private:
int forks[5];
int Yellow_card(5];
condition_t fork_usable Philo[5];
public:
fork();
“fork();
int PickUp_fork(int Philo_num, int wait_times);
void PutDown_fork(int Philo_num);
}

If we rewrite the style for the consumer and producer problem,
in the mixed style,the consumer program that pop data from
the stack above becomes very simple, that is:
pop_data= stack_oper_0ID -> pop ();

The mixed style is better than the simple style,because in the
first, not only the autonomous class program becomes very
simple but also the cost for locking/unlocking operations can
be reduced. We can compare Figure 2. with Figure 1.

sync object

auto object auto object aulo odject

L.

p _,,/(/(e b r,;dlulx‘:cvl

wail

pop
signal_produces
~
OO 1§ S
aapty
wait_production 3

§
wait H
\J
s wateck

 leck

Figure 2. A synchronous Object in mixed Style Version

But the common problem in both styles is that users have
to use the system-defined opcrations of the Mach operating
system, when they design their synchronous classes. Users
have to understand the syntax and semantics of these oper-
ations, before they use them, which is trublesome. So, we
provide a inheritance style version.

3.3 Inheritance style

Inheritance style version is based on inheritance of C++.
The Mach’s system-defined operations are encapsulated in
a superclass which becomes in turn a WARASA’s system-
defined class.

When the user needs to define a synchronous class in his
own, he dosen’t not to know the Mach’s system-defined oper-
ations. The only thing that he has to know is how to inherit
the synchronous superclass existing in WARASA.

For example, the synchronization mechanism used for a

parallel hash-join algorithm uses the inheritance style. A par-
ent_join_sync class is defined as a superclass, which is provided
by WARASA, and a join_sync class is its derived class, de-
signed by the user. The definition of the join_sync class is as
follows:

sync class join_sync: public parent_join_sync{
private:
int bucket_sum_n;
int bucket_i;
int auto_object_sum_n;
int object_i;
pare_join_sync parent;
public:
join_sync();
“jein_sync();
void wait_join_divid_finish_sync();
int bucket_assign();

}

Figure 3. Depictes the function of the join_sync object.

sute ebfect

&)

tclusive abject syac sbjuet

é

e

liak joinid Ill'l.lﬂ

Figure 3. A Parallel Hash-join Algorithin

4 Conclusions

We have described the synchronization mechanism in
WARASA. Tt plays an important role in supporting the au-
tonomous objects that work cooperatively using high-level
message passing. The determination of a more powerful syn-
chronization mechanism version in designing WARASA is one
of our current research subjests.

References

[JIA91) Y.Jiang and A.Makinouchi, “A Parallel Object-
Oriented Persistent Programming Language WAR-
ASA,” Information Processing Society of Japan,
pp.4-181 - 4-182, Oct. 1991.

B.Stroustrup, “The C++ Programming Language”
Addison-Wesley, Reading, Mass., 1986.

[STRs6)

