
Vol. 42 No. 2 IPSJ Journal Feb. 2001

Regular Paper

Checkpointing and Restarting Protocols on Object-based Systems

Katsuya Tanaka† and Makoto Takizawa†

In object-based systems, multiple objects cooperate with each other by exchanging mes-

sages. The objects may suffer from faults. If some object o is faulty, o is rolled back to the

checkpoint c and objects which have received messages from o are also required to be rolled

back to the checkpoints which is consistent with c. In this paper, we discuss how to take

checkpoints in object-based systems. Object-based checkpoints are consistent in the object-

based system but may be inconsistent according to the traditional message-based definition.

We present a protocol for taking object-based checkpoints among objects. An object to take a

checkpoint in the traditional message-based protocol does not take a checkpoint if the current

checkpoint is object-based consistent with the other objects. The number of checkpoints can

be reduced by the object-based protocol.

1. Introduction

Distributed applications are composed of
multiple objects. An object is an encapsula-
tion of data and methods for manipulating the
data. A method is invoked by a message passing
mechanism. On receipt of a request a message
with a method op, op is performed on an object
and a response message with the result of op is
sent back. The method may invoke methods on
other objects, i.e., invocation is assumed to be
nested. A conflicting relation among the meth-
ods is defined based on the semantics of the ob-
ject 4). If a pair of methods op1 and op2 conflict,
a state of the object obtained by performing op1

and op2 depends on the computation order of
op1 and op2.
In order to increase the reliability and avail-

ability, an object takes a checkpoint where a
state of an object is saved in the log at a check-
point. A faulty object o is rolled back to the
checkpoint and then is restarted. Here, objects
which have received messages sent by objects
rolled back also have to be rolled back. Pa-
pers 1),2),7),9)∼11),13) discuss how to take a glob-
ally consistent checkpoint of multiple objects.
The paper 7) presents synchronous protocols

for taking checkpoints and rolling back objects.
The paper 9) presents the concept of significant
requests, i.e., the state of an object is changed
by performing the request. If an object o is

† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

rolled back, only objects which have received
significant requests sent by o are required to be
rolled back. Thus, the number of objects to be
rolled back can be reduced. However, in the
object-based systems, types of messages, i.e.,
request and response messages are exchanged
among objects and methods are invoked in var-
ious ways. In the paper 9), the transmissions
of requests and responses and types of invoca-
tions are not considered. Since the traditional
checkpoints are defined in terms of messages
exchanged among objects, the definition is re-
ferred to as message-based.
We newly define object-based consistent (O-

consistent) checkpoints which can be taken
based on conflicting relations among methods
in various types of invocations like synchronous
and asynchronous ones. The O-consistent
checkpoint may be inconsistent with the tra-
ditional message-based definition. In this pa-
per, we present a protocol where O-consistent
checkpoints are taken for objects without sus-
pending the computation of methods. By tak-
ing only the O-consistent checkpoints, the num-
ber of checkpoints can be reduced.
In Section 2, we discuss the object-based

checkpoints. In Sections 3 and 4, we show a
checkpointing protocol and restarting protocol,
respectively.

2. Object-based Checkpoints

In this section, we formalize a concept of
objects, especially define a conflicting relation

268

Vol. 42 No. 2 Checkpointing and Restarting Protocols on Object-based Systems 269

among methods. Then, based on conflicting re-
lation, we discuss what types of checkpoints can
be consistently taken in object-based systems.

2.1 Objects
A distributed system is composed of multiple

objects o1, . . . , on. Each object oi is an encap-
sulation of data and a set of methods for ma-
nipulating the data. In this paper, we assume
methods are synchronously or asynchronously
invoked by using the remote procedure call. On
receipt of a request op, op is performed on the
object oi. Here, let opi denote an instance of op,
i.e., a thread of op on oi. Then, a response mes-
sage is sent back. op may furthermore invoke
another method op1, i.e., invocation is assumed
to be nested . If op1 is synchronously invoked,
op blocks until receiving the response of op1. In
the asynchronously invocation, op is being per-
formed without blocking. It is defined that a
message m participates in a method op if m is
a request or response of op. Let Op(m) denote
a method in which a message m participates.
Let op(s) denote a state obtained by perform-

ing a method op on a state s of an object oi.
op1◦op2 shows that a method op2 is performed
after op1 completes. op1 and op2 of an object
o are defined to be compatible iff op1◦op2(s)
is equivalent with op2◦op1(s) for every state s

of o 4). Otherwise, op1 and op2 conflict. It is
assumed that an object supports two kinds of
methods, i.e., update method which changes the
state of the object and non-update one. The
types of methods are assumed to be specified
with the conflicting relation among the meth-
ods in the definition of the object.

2.2 Object-based Checkpoints
A local checkpoint ci for an object oi is taken

where a state of oi is stored in the log li. If
oi is faulty, oi is rolled back to ci by restoring
the state stored in the log li. Then, other ob-
jects have to be rolled back to the checkpoints if
they had received messages sent by oi. A global
checkpoint c is defined to be a tuple 〈c1, . . . , cn〉
of the local checkpoints. From here, a term
checkpoint means a global one.
Suppose an instance opi

1 invokes a method
op2 in oj . Figure 1 shows possible checkpoints
for oi and oj . Here, ci

3 is not taken if opj
2 is

synchronously invoked. Let πj(opj , cj) be a set

Fig. 1 Possible checkpoints.

Table 1 O-consistent checkpoints for Fig. 1.

oi oj Conditions

ci
1 cj

3*, cj
4 opj

2 is a non-update type.

ci
2 cj

3*, cj
4 opj

2 is a non-update type.

ci
4 cj

1 opj
2 is a non-update type and no

ci
5 method in πj(opj

2, cj
1)

conflicts with opj
2.

cj
2, cj

3* opj
2 is a non-update type.

of instances performed on oj , which precede opj

and succeed cj or are being performed at cj in
oj . For example, πj(op

j
2, cj

1) is {opj
21, . . . , op

j
2l}

in Fig. 1.
We discuss whether or not each checkpoint

〈ci
k, cj

h〉 can be taken in the object-based sys-
tem. For example, 〈ci

1, cj
3〉 is message-based

inconsistent in Fig. 1 because a message m1 is
an orphan. If opj

2 is non-update, the state de-
noted by cj

2 is the same as cj
3 and cj

4. That
is, 〈ci

1, cj
3〉 and 〈ci

1, cj
4〉 show the same state as

〈ci
1, cj

2〉. 〈ci
1, cj

2〉 is message-based consistent.
Hence, oj can be restarted from any of cj

3 and
cj
4 if oj can be restarted from cj

2. Here, 〈ci
1,

cj
3〉 is consistent in the object-based system (O-
consistent). 〈ci

1, cj
4〉 is also O-consistent. A

local checkpoint ci is defined to be complete
if there is no method being performed at ci.
For example, ci

3 is incomplete in Fig. 1. Ta-
ble 1 summarizes the message-based inconsis-
tent but O-consistent checkpoints, where check-
points marked * are incomplete if opj

2 is being
performed.
[Definition] A message m is influential iff a

270 IPSJ Journal Feb. 2001

method instance opj
2 of an object oj sends a

message m to oi and one of the following con-
ditions is satisfied:
(1) opi

1 is an update type if m is a request
message, i.e., opj

2 invokes opi
1 in oi.

(2) If m is a response of opj
2, op

j
2 is an update

type or conflicts with some instance in
πj(op

j
2, c) where c is a local checkpoint

most recently taken in oj . ✷

If opi is aborted, only instances receiving in-
fluential messages from opi are required to be
aborted. In Fig. 1, suppose opi

1 sends an asyn-
chronous update request m1. Here, m1 is influ-
ential from the definition. If oi is rolled back to
ci
2, oj is also rolled back.

[Definition] A global checkpoint c (= 〈c1, . . . ,
cn〉) is object-based consistent (O-consistent) iff
there is no influential orphan message at c. ✷

3. Checkpointing Protocol

In this section, a communication-induced
protocol used for taking O-consistent check-
points is introduced. By the protocol, consis-
tent global checkpoint can be taken without
suspending the computation. First, a basic
communication-induced protocol is presented.
Then, we discuss how to take only O-consistent
checkpoints in the protocol. Finally, we show
how to solve the problems which may be oc-
curred while taking the checkpoints, i.e., cyclic
checkpointing and cascading rollback.

3.1 Communication-induced Protocol
We briefly present a basic communication-

induced checkpointing protocol where objects
are not suspended while checkpoints are being
taken. First, each object oi initially takes a lo-
cal checkpoint ci

0. An initial checkpoint 〈c1
0, . . . ,

cn
0 〉 is assumed to be consistent. After sending
and receiving messages, a first local checkpoint
ci
1 is taken for oi. Thus, the t-th local check-
point ci

t is taken after ci
t−1 (t > 0). Here, t is

defined to be a checkpoint identifier of ci
t.

Suppose a local checkpoint ci
t is taken for an

object oi after ci
t−1. Then, only if oi sends a

message m to another object oj , m is marked
checkpointed. By sending m, oi notifies the des-
tination objects that oi has taken ci

t. Thus, oi

does not send any additional control message
to take local checkpoints. Here, suppose cj

u−1

Fig. 2 Checkpoint state.

is taken for oj and a checkpoint 〈ci
t−1, cj

u−1〉 is
consistent. On receipt of the checkpointed mes-
sage m from oi, a local checkpoint cj

u is taken
for oj at which oj saves a state which is most re-
cent before oj receives m. The state saved here
is referred to as checkpoint state. In fact, a cur-
rent state and the operation rec(m) for receiv-
ing m are stored in the log lj . A compensating
operation ∼rec(m) to remove every effect done
by rec(m) is assumed to be supported for every
object. If oj is rolled back to cj

u, the state saved
in the log is first restored, and then ∼rec(m) is
performed (Fig. 2).
In the object-based system, oj does not take

cj
u if 〈ci

t, cj
u−1〉 is O-consistent. We discuss how

oj decides if 〈ci
t, cj

u−1〉 is O-consistent.
3.2 O-consistent Checkpoints
A vector of checkpoint identifiers 〈cp1, . . . ,

cpn〉 is manipulated for an object oi to iden-
tify the t-th local checkpoint ci

t of oi. Each cpk

is initially 0. Each time a local checkpoint is
taken for oi, cpi is increased by one. A message
m which oi sends to oj after taking ci

cpi
car-

ries a vector m.cp which is equal to 〈m.cp1, . . . ,
m.cpn〉, where m.cpk is cpk of oi (k = 1, . . . , n).
On receipt of a message m from oj , the value

of m.cpj is stored in cpj of oi. cpi shows
a checkpoint identifier which oi has most re-
cently taken. Another variable cph shows a
newest checkpoint identifier of an object oh

which oi knows (h = 1, . . . , n, j �= i). That
is, 〈ci

cp1
, . . . , ci

cpn
〉 shows a current checkpoint

which oi knows. If m.cpj > cpj in oi, oi finds
that oj has taken cj

u following ci
cpj

where u is
equal to m.cpj . A local checkpoint ci

t is identi-
fied by a vector 〈ci

t.cp1, · · · , ci
t.cpn〉 where each

ci
t.cpj shows a value of cpj when ci

t is taken for

Vol. 42 No. 2 Checkpointing and Restarting Protocols on Object-based Systems 271

oi.
A local checkpoint ci

t has a bitmap ci
t.BM

which is equal to b1 · · · bn where each h-th bit bh

is used for an object oh (h = 1, . . . , n). Suppose
ci
t is taken for oi. Here, ci

t.bi is 1 and ci
t.bj is 0

for j = 1, . . . , n, j �= i. If ci
t.bj is 0 and there is

data to be sent to oj , oi sends a checkpointed
message m with the data to oj . Here, the value
of ci

t.BM is stored in m.BM .
On receipt of m from oi, oj takes a local

checkpoint cj
u. Here, the value of m.bk is stored

in cj
u.bk (k = 1, . . . , n, k �= j) and cj

u.bj is up-
dated to 1 while the checkpoint identifier vector
is updated as presented here. Thus, “ci

t.bk = 1”
shows that oi knows ok takes a local check-
point by the checkpointing protocol initiated by
a same object.
[Definition] ci

t and cj
u are in the same genera-

tion if ci
t.BM ∩ cj

u.BM �= φ and ci
t.cpk is equal

to cj
u.cpk for every object ok such that ci

t.bk =
cj
u.bk = 1. ✷

Each time an object oi sends a message m to
oj , a message sequence number sq and a sub-
sequence number ssqj are incremented by one
(j = 1, . . . , n). The sequence number m.sq and
a vector of the subsequence numbers m.ssq (=
〈m.ssq1, . . . , m.ssqn〉) are carried by m. Vari-
ables rsq1, . . . , rsqn and rssq1, . . . , rssqn are
manipulated in oj . On receipt of m from oi, oj

accepts m if m.ssqj is equal to rssqi + 1. That
is, oj delivers messages from each object in the
sending order. Then, rssqi is incremented by
one and the value of m.sq is stored in rsqi.
rssqi and rsqi show subsequence and sequence
numbers of message which oj has most recently
received from oi. m also carries a vector m.rq

(= 〈m.rq1, . . . , m.rqn〉) where m.rqk is equal to
rsqk (k = 1, . . . , n). Here, m.rqk shows a se-
quence number of message which oi has received
from oj just before ci

t and t is equal to m.cpi

(k = 1, . . . , n).
On receipt of a message m from oi, oj col-

lects a set Mj of messages mj1, . . . , mjlj which
oj has sent to oi after cj

u−1 and oi has received
before ci

t. Here, mjh.sq ≤ m.rqj (Fig. 3). Mes-
sages which oj sends after cj

u−1 are stored in the
sending log of oj . Suppose oj receives a check-
pointed message m from oi. If m.cpi > cpi, oj

knows oi takes ci
t. oj collects every message m′

Fig. 3 Influential messages.

Fig. 4 Cyclic checkpointing.

which oj has sent after cj
u−1 and m′.sq < m.rqj

in the set Mj .
It is clear for the following theorem to hold

from the definition.
[Theorem] A message mjh which oj sends to
oh after taking a local checkpoint cj

u−1 before cj
u

is influential if mjh is a request and Op(mjh)
is an update type, or mjh is a response and
Op(mjh) is an update type or conflicts with
some update method in πj(Op(mjh), cj

u−1). ✷

The condition of the theorem is referred to
as influential message (IM) condition. Only if
some message in Mj is decided to be influential
by IM condition, oj takes a local checkpoint.

3.3 Cyclic Checkpointing
We discuss how to resolve a cyclic check-

pointing which occurred in the communication-
induced protocol. Due to the cyclic checkpoint-
ing, the checkpointing procedure cannot be ter-
minated as shown in Example 1.
[Example 1] Suppose each of three objects o1,
o2, and o3 has initially checkpoint identifier vec-
tor cp = 〈cp1, cp2, cp3〉 = 〈4, 2, 7〉 (Fig. 4).
First, a local checkpoint c1

5 is taken for o1. Here,
cp is 〈5, 2, 7〉. o1 sends m1 with 〈5, 2, 7〉 to o2

after taking c1
5. o2 takes c2

3 on receipt of m1

272 IPSJ Journal Feb. 2001

where c2
3.cp is 〈5, 3, 7〉. Then, o2 sends m2

with 〈5, 3, 7〉 to o3. On receipt of m2, o3 takes
c3
8 and sends m3 with 〈5, 3, 8〉 to o1. o1 takes

c1
6. Then, o2 and o3 take new local checkpoints
as presented here. Thus, the checkpointing pro-
cedure cannot be terminated in o1, o2, and o3.
This is cyclic checkpointing. ✷

Here, when o1 receives m3, o1 is not required
to take a local checkpoint because a checkpoint
〈c1

5, c2
3, c3

8〉 taken already is consistent. A pair
of checkpoints identified by 〈5, 2, 7〉 and 〈5, 3,
8〉 are in the same generation.
The cyclic checkpointing is resolved by using

the bitmap BM as shown in Example 2.
[Example 2] Here, let a notation “〈cp1, . . . ,
cpn〉b1...bn

” show cp is 〈cp1, . . . , cpn〉 and BM is
b1 · · · bn. In Fig. 4, o1 sends o2 a message m1

with 〈5, 2, 7〉100, i.e., cp = 〈5, 2, 7〉 and BM =
100 after c1

5. On receipt of m1, cp is changed to
〈5, 2, 7〉 in o2. Then, o2 sends m2 with 〈5, 3,
7〉110 to o3 after c2

3. c3
8 is taken for o3 and then

sends m3 with 〈5, 3, 8〉111 to o1. On receipt of
m3, o1 knows the checkpointing procedure has
been initiated by o1 because 〈5, 2, 7〉 and 〈5, 3,
8〉 are in the same generation. ✷

The checkpoint identifier vector cp (=
〈cp1, . . . , cpn〉) and the bitmap BM = b1 · · · bn

are manipulated in oi on receipt of m as follows:
• cpk := max(cpk, m.cpk) if m.bk = 1 for ev-

ery k (�= i).
• BM := BM ∪ m.BM .

The checkpoint identifier vector cp and the
bitmap BM are saved in the checkpoint log ci

cpi

of oi only if they are changed. In Fig. 4, on re-
ceipt of m3, c1

5.cp is updated to 〈5, 3, 8〉. If
cp1 > m.cp1, another object initiates the check-
pointing procedure independently of o1. A local
checkpoint is taken for o1 if there is some influ-
ential message in M1.

3.4 Merge of Checkpoints
Next, we consider a cascading rollback prob-

lem which occurred while rolling back the ob-
jects as shown in the following example.
[Example 3] In Fig. 5, every object has a
checkpoint identifier vector cp which is equal to
〈4, 3, 7, 2〉. Suppose o1 and o4 independently
take checkpoints. o1 sends m1 after c1

5 with 〈5,
3, 7, 1〉1000, i.e., cp is 〈5, 3, 7, 1〉 and BM is
1000. On receipt of m1, o2 takes c2

4 and then

Fig. 5 Checkpoints.

sends m2 with 〈5, 4, 7, 1〉1100. On the other
hand, o4 takes c4

2 with 〈4, 3, 7, 2〉0001 and then
sends m4 to o3. o3 takes c3

8 with 〈4, 3, 8, 2〉0011
and then sends m3 to o2. o2 receives m3 with
〈4, 3, 8, 2〉0011 from o3 after c2

4 with cp which
is equal to 〈5, 4, 7, 1〉. o3 receives m2 with 〈5,
4, 7, 1〉1100 after c3

8 with cp which is equal to
〈4, 3, 8, 2〉. One way is that o2 and o3 take c2

5

with 〈4, 5, 8, 2〉0111 and c3
9 with 〈5, 4, 9, 3〉1110,

respectively. Here, 〈c1
5, c2

4, c3
9, c4

3〉 and 〈c1
6, c2

5,
c3
8, c4

2〉 are taken for o1, o2, o3, and o4.
Suppose o4 is faulty and is rolled back to c4

3.
Then, o3 is rolled back to c3

9 and then o2 is
rolled back to c2

4. Here, o3 is required to be fur-
thermore rolled back to c3

8 and o3 is also rolled
back to c4

2. In the worst case, each object is
rolled back to the local checkpoints n times for
the number n of objects 6). ✷

In order to prevent such a cascading rollback,
we take an approach to merging multiple check-
points to one. In Fig. 5, o2 receives m3 after c2

4.
Here, 〈c1

5, c2
4〉 with BM which is equal to 1100

and 〈c3
8, c4

2〉 with BM which is equal to 0011
are merged into 〈c1

5, c2
4, c3

8, c4
2〉 with BM which

is equal to 1111.
[Merge of checkpoints] After ci

t, oi receives
a message m.
(1) If a checkpoint ci

u denoted by m.cp is not
in the same generation as ci

t, i.e., ci
u.BM

∩ m.BM is not φ, the value of m.cpk is
stored in ci

t.cpk if ci
t.bk is 0 and m.bk is 1

for every k (�= i), and ci
t.BM is updated

to ci
t.BM ∪ m.BM .

(2) Otherwise, ci
t.BM is updated to ci

t.BM

∪ m.BM and ci
t.cpk is changed to

max(ci
t.cpk, m.cpk) for every k (�= i). ✷

[Theorem] A set of local checkpoints which
belong to the same generation with the merge

Vol. 42 No. 2 Checkpointing and Restarting Protocols on Object-based Systems 273

procedure are O-consistent. ✷

[Proof] We prove the theorem by contradic-
tion. Assume there are a pair of local check-
points ci

t and cj
u of the same generation, which

are not O-consistent, i.e., there exists an influ-
ential message m which is sent after ci

t and is
received before cj

i . Here, if oi sends m to oj ,
m is marked checkpointed. On receipt of m, oj

takes a local checkpoint cj
u−1 most recent be-

fore receiving m if m is influential. Otherwise,
oj does not take a local checkpoint. Thus, a
pair of the local checkpoints ci

t and cj
u never

belong to a same generation. This contradicts
the assumption. ✷

By the merging procedure, a new local check-
point is not taken for o2 even if o2 receives mes-
sages after m3 in Fig. 5.

4. Rollback Recovery

If some object is faulty, objects which have
received influential messages sent by the object
are also required to be rolled back. In this ses-
sion, we discuss how to restart the computation
after some faulty object is rolled back.

4.1 Restarting Protocol
If an object oi is faulty, oi is rolled back to the

local checkpoint ci
t. Other objects which have

received influential messages sent by oi after ci
t

are also required to be rolled back. Messages
which oi sends are recorded in the sending log.
oi has to send a rollback request message R-Req
to every object oj which oi has sent influential
messages after ci

t. In order to decide to which
objects R-Req is sent, oi manipulates a log SLi

t

as follows:
• When a local checkpoint ci

t is taken for oi,
SLi

t is initiated to be empty.
• If oi sends an influential message m to oj ,

SLi
t is updated to SLi

t ∪ {oj}.
If oi is rolled back to ci

t, oi sends R-Req to
every object oj in SLi

t. Here, R-Req contains
the following information:
• A vector cp = 〈cp1, . . . , cpn〉 of ci

t to which
oi is rolled back.

• A bitmap RB = rb1 . . . rbn where each rbk

is 1 if oi knows ok is rolled back to a same
generation checkpoint as ci

t, otherwise, rvb

is 0.
Suppose an object oi is faulty and is rolled

back to ci
t. oi sends R-Req to every ok in SLj

u

with cj
u.cp and RB where rbi is updated to 1.

Then, oi is suspended. On receipt of R-Req
from oi, oj is also suspended. oj discards R-
Req if R-Req .rvj is 1 since oj has been already
rolled back in this generation. Otherwise, rbj

is changed to 1 and RB is updated to RB ∨
R-Req .RB. oj looks for an oldest local check-
point cj

u where cpi is equal to R-Req .cpi. If
oj finds cj

u, cj
u is defined to be a rollback point

of oj . Otherwise, the most recent checkpoint
where cpi is smaller than R-Req .cpi is a rollback
point . Then, oj collects a set RLj of messages
which oj has received from oi after cj

u. If there
is some influential message in RLj , oj is rolled
back to the rollback point cj

u. Then, oj sends R-
Req to every ok in SLj

u with RB and cj
u.cp. If oj

received no influential message from oi, oj dis-
cards R-Req since oj is not required to be rolled
back. If oj does not send R-Req to any objects,
oj sends the restart request message Res-Req to
oi. Otherwise, oj waits for Res-Req from every
object in SLj

u. Then, oj sends Res-Req to oi.
[Example 4] In Fig. 6, if o1 is faulty, o1 is
rolled back to c1

1. o1 is suspended and finds
that o1 has sent an influential message to o2 by
searching SL1

1. Then, o1 sends R-Req to o2 with
cp = 〈1, 0, 0〉 and RB = 100. On receipt of R-
Req from o1, o2 finds an oldest local checkpoint
c2
1 where cp1 is equal to 1 because R-Req .cp1 is
1. Since m1 in RL1 is influential, o2 is rolled
back to c2

1. R-Req .rb2 is updated to 1. Then,
o2 sends R-Req to o3 if m2 is influential. On
receipt of R-Req from o2, o3 is rolled back to
c3
2 if m2 is influential. Otherwise, o3 just dis-
cards R-Req , sends back the Res-Req to o2, and
then continues the computation. On receipt of
Res-Req from o3, o2 sends Res-Req to o1 and is

Fig. 6 Restarting procedure.

274 IPSJ Journal Feb. 2001

Fig. 7 Synchronous restarting procedure.

restarted. ✷

4.2 Synchronous Restarting Protocol
In the protocol, each object is not required to

be restarted simultaneously with other objects.
This protocol is effective if only a few number of
objects are rolled back after some faulty object
is rolled back. However, the more number of
objects to be rolled back, the longer it takes
to recover from the fault. In order to resolve
the difficulty, we show a synchronous restarting
protocol.
Suppose an object oi is faulty and is rolled

back to the local checkpoint ci
t. oi is suspended

and broadcasts R-Req to all objects with ci
t.cp.

On receipt of R-Req from oi, oj is suspended.
Then, the value cj

u.cpi is compared with R-
Req .cpi where cj

u is a most recent local check-
point. Suppose R-Req .cpi ≥ cj

u.cpi. Since oj

has not taken a same generation checkpoint
with ci

t, oj is not rolled back. oj sends back
a message no to oi and then is restarted. Oth-
erwise, oj sends yes to oi. oi finds a group of
objects to be rolled back by using a bitmap RB
(= rb1, . . . , rbn). Each variable rbk is initially
0 (1 ≥ k ≥ n). On receipt of yes from ok, rbk

is updated to 1. After receiving messages from
all the objects, oi sends Rollback with RB to ok

where rbk is 1. On receipt of Rollback from oi,
oj is rolled back to the rollback point if oj had
received any influential message from ok where
rbk is 1. Then, oj sends back Done to oi. On re-
ceipt of Done from all the objects which oi has
sent Rollback, oi sends Res-Req to the objects
and then is restarted. On receipt of Res-Req, oj

is restarted.
[Example 5] Suppose there are four objects
o1, o2, o3 and o4 as shown in Fig. 7. Here,
suppose o1 is faulty and is rolled back to the
checkpoint c1

1. o1 broadcasts R-Req. On receipt

of R-Req from o1, o2 and o3 send yes and o4

sends no to o1 since c1
1.cp1 = c2

1.cp1 = c3
1.cp1.

On receipt of the messages, rb is updated to
1110 in o1. o1 sends Rollback to o2 and o3. On
receipt of Rollback, o2 is rolled back to c2

1 if m1

is influential. Similarly, o3 is rolled back to c3
1

if m2 is influential. ✷

5. Concluding Remarks

We discussed how to take object-based con-
sistent (O-consistent) checkpoints which show
consistent global checkpoints in object-based
systems. O-consistent checkpoints may be in-
consistent with the traditional message-based
definition. We have defined influential mes-
sages on the basis of the conflicting relation of
requests where the methods are synchronously
or asynchronously invoked in the nested man-
ner. Only objects receiving influential messages
are rolled back if the senders of the influential
messages are rolled back. As the result, the
number of local checkpoints can be reduced by
the O-checkpoints. At the O-consistent check-
point, there is no orphan influential message.
Also, we presented the protocol for taking O-
consistent checkpoints where no object is sus-
pended in taking checkpoints. We presented
the restarting protocol after some faulty object
is rolled back.

References

1) Bhargava, B. and Lian, S.R.: Independent

Checkpointing and Concurrent Rollback for

Recovery in Distributed Systems – An Opti-

mistic Approach, Proc. IEEE SRDS-7, pp.3–12

(1988).

2) Chandy, K.M. and Lamport, L.: Distributed

Snapshots: Determining Global States of Dis-

tributed Systems, ACM TOCS, Vol.3, No.1,

pp.63–75 (1985).

Vol. 42 No. 2 Checkpointing and Restarting Protocols on Object-based Systems 275

3) Fischer, M.J., Griffeth, N.D. and Lynch, N.A.:

Global States of a Distributed System, IEEE

Trans. Softw. Eng., Vol.SE-8, No.3, pp.198–202

(1982).

4) Garcia-Molina, H.: Using Semantics Knowl-

edge for Transaction Processing in a Dis-

tributed Database, Proc. ACM SIGMOD,

Vol.8, No.2, pp.188–213 (1983).

5) Helary, J.-M., Netzer, R.H.B. and Raynal, M.:

Consistency Issues in Distributed Checkpoints,

IEEE Trans. Softw.Eng., Vol.25, No.2, pp.274–

281 (1999).

6) Higaki, H., Sima, K., Tanaka, K., Tachikawa,

T. and Takizawa, M.: Checkpoint and Rollback

in Asynchronous Distributed Systems, Proc.

IEEE INFOCOM ’97, pp.1000–1007 (1997).

7) Koo, R. and Toueg, S.: Checkpointing and

Rollback-Recovery for Distributed Systems,

IEEE TOCS, Vol.C-13, No.1, pp.23–31 (1987).

8) Lin, L. and Ahamad, M.: Checkpointing

and Rollback-Recovery in Distributed Object

Based Systems, Proc.IEEE SRDS-9, pp.97–104

(1990).

9) Leong, H.V. and Agrawal, D.: Using Mes-

sage Semantics to Reduce Rollback in Op-

timistic Message Logging Recovery Schemes,

Proc. IEEE ICDCS-14, pp.227–234 (1994).

10) Manivannan, D. and Singhal, M.: A Low-

Overhead Recovery Technique Using Quasi-

Synchronous Checkpointing, Proc. IEEE

ICDCS-16, pp.100–107 (1996).

11) Ramanathan, P. and Shin K.G.: Checkpoint-

ing and Rollback Recovery in a Distributed

System Using Common Time Base, Proc. IEEE

SRDS-7, pp.13–21 (1988).

12) Tanaka, K., Higaki, H. and Takizawa, M.:

Object-Based Checkpoints in Distributed Sys-

tems, J. Computer Systems Science and Engi-

neering, Vol.13, No.3, pp.125–131 (1998).

13) Wang, Y.M. and Fuchs, W.K.: Optimistic

Message Logging for Independent Checkpoint-

ing in Message-Passing Systems, Proc. IEEE

SRDS-11, pp.147–154 (1992).

(Received June 14, 2000)
(Accepted December 1, 2000)

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degrees in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is a
assistant in the Department of Computers and
Systems Engineering, Tokyo Denki University.
He received the D.E. degree from Dept. of Com-
puters and Systems Engineering, Tokyo Denki
University, Japan, in 2000. His research interest
includes distributed systems, transaction man-
agement, recovery protocols, and network pro-
tocols. He is a member of IEEE CS and IPSJ.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku Univ.,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku

Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
univ., England since 1990. He was a program
co-char of IEEE ICDCS-18, 1998 and serves on
the program committees of many international
conferences. He chaired SIGDPS of IPSJ from
1997 to 1999. He is IPSJ fellow. His research in-
terest includes communication protocols, group
communication, distributed database systems,
transaction management, and security. He is a
member of IEEE, ACM, and IPSJ.

