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1 Introduction

Algorithm BSTW developed by Bentley, Slea.tbr, Tar-
jan and Wei [1] is one of the most efficient data com-
pression algorithms. This algorithm takes an advantage
of locality of reference, the tendency of words to occur
frequently for a short period of time and then fall into
long period of disuse. The scheme is based on a self-
organizing list, for maintaining code table. PPM (Pre-
diction by Partial Matching) in conjunction with Arith-
metic coding, first investigated by Cleary and Witten
[2] and later modified and implemented by Moffat [4]
had been also reported of high performance data com-
pression. The algorithm bias probabilities assigned to
symbols according to the immediately preceeding text.
In this paper we propose the using of BSTW’s idea and
employ PPM to fomulate adaptive data compression
model.

2 BSTW With PPM Data Compres-
sion Model

BSTW method is a defined-word scheme that attemps
to exploit locality of reference. The algorithm uses a
self-organizing list as an auxiliary data structure and
shorter encoding for words near the beginning of the list.
BSTW employs ”move-to-front” heuristic for maintain-
ing the code table. During the encoding process, code
table will be created and reorganized by keeping current
symbol at the first position. Encoding integers will be
the numbers representing their positions in current code
table. Our data compression model is similar to BSTW
but different in the method of maintaining code table.
We try to exploit the interdependency of occurrence of
source messages for maintaining code table. The reor-
ganization of code table will be based on the prediction
from most recent symbols seen, ie. PPM, as the follow-
ing condition.

If p(silex) > p(s;lek) then d(s;) < d(s;)
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where p(s;|ci) is a probability of next occurrence
of symbol s; given a preceeding context ¢y,

and d(s;) is a distance of symbol s; from the
beginning of code table to its position.

The preceeding contexts ¢, may be fixed or variable
length. For fixed length context model, they will be
referred to as 1st,2nd,3rd, ... order model according to
the length of contexts. The encoding processes are per-
formed in the same way as BSTW that each symbol will
be converted into an integer representing its position in
current code table. For integer encoding we used op-
timal universal Elias prefix codes [3]. This code maps
an integer = onto binary value of = prefixed by |logz|
zeros. For example, 1 will be maped onto binary digits
as ”1”, 2 as "010”, 3 as "011”, 4 as ”00100” and etc.

3 Algorithm and Implementation

The algorithm of our model can be explained as follow.
1. Set default previous context.
2. Input a data symbol to be encoded.

3. Look for this symbol in code table (initialize with
null). If exist, encode by sending its current po-
sition, else encode by sending n + 1 (n is no. of
symbols in code table) follow by new symbol and
add new symbol to code table.

4. Accumulate frequency count table depending on
previous context and current symbol.

5. Set new previous context.

6. Reorganize code table based on previous context
and corresponding symbol frequency counts.

7. Repeat from step 2 to step 6 until end of file.

The computer programs have been developed in C lan-
guage with no purpose of optimal time processing. The
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various types of text files have been tested with various
order context models.

4 Experimental Results

A simple model using 1st order context has been tested
with text files, eg. C source programs (files 1-3), UNIX
manual pages (files 4-9), UNIX OS and Utilities docu-
ment (file 10). The results are shown in Table 1, com-
paring among the other methods, BSTW move-to-front
(byte level), "compact”, arithmetic coding [5] and our
algorithm. The numbers show the percentage of reduc-
tion in size after compression, ie.

((original-compressed)/original*100).

No | Size | BSTW | BSTW | compact | Arith

KB | MTF | PPM

(1st)
1 23| 305 62.4 42.5 33.2
21 34| 417 68.3 50.7 394
3| 36| 121 47.8 36.2 28.9
4] 35| 122 43.5 36.5 28.8
5[ 41 10.0 46.7 38.3 30.1
6| 57 11.7 46.9 375 30.2
7| 58] 124 50.8 36.9 30.0
8| 68| 14.7 494 399 33.3
9 72| 134 49.7 39.2 32.6
10| 199} 27.7 52.1 42.5 35.1

Table 1 : Experimental results comparing among var-
ious methods with our 1st order model.

The higher order model, upto 5th, have been also
tested with the same set of text files. The results, com-
paring with UNIX utility ”compress”, are shown in Ta-
ble 2.

No | compress BSTW with PPM

2nd | 3rd | 4th | 5th

1 67.4 71.3 | 7291729 | 72.7
2 73.9 74.0 | 75.6 | 75.6 | 75.6
3 55.0 59.4 | 63.4 | 63.7 | 63.8
4 48.7 51.5 | 55.6 | 54.3 | 53.6
5 54.6 56.8 | 59.8 | 58.9 | 58.2
6 55.0 57.3 | 60.8 | 59.7 | 58.9
7 61.4 64.4 | 68.4 | 68.8 | 68.5
8 57.4 58.8 | 63.7 1 63.0 | 61.9
9 60.9 62.8 | 67.6 | 67.9 | 67.6
10 62.3 62.5 } 67.2 [ 66.9 | 66.2

Table 2: Experimental results of higher order models.

5 Conclusion

The theoretical behind our compression model is that
if successive input data are dependent the entropy be-
comes less per unit than an individual input. The first-
order entropy is defined as :

Hy = — ¥ p(si) log p(s:)

where p(s;) is the probability of occurrence of symbol
8;.

The second-order entropy is also defined as :

Hy = —3; 5 p(si, 35) log p(s;, s;)

where p(s;, s;) is the join probability density function.

The higher order of entropy can be defined in the same
way as second-order. They can be shown that

Hy>H; >H;> ...

This means that we can reduce the entropy or increase
the redundancy of data that give more possibly to com-
press.

We have described a simple data compression model
but capabality of high compression rate. From experi-
mentals, they suggested that the method may be useful
in practice, especially for data having high interdepen-
dency, eg., text files. However, this method can not
compress well enough when apply to non-text files. An-
other problems still unresolved are processing time and
memory space. These problems require further study
and development.
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