
Vol. 42 No. 2 IPSJ Journal Feb. 2001

Regular Paper

A Systolic Sieve Array for Real-time Packet Classification

Naohisa Takahashi†

Packet classification, in which the packet header is analyzed and data corresponding to the
header is selected, is a key function in implementing routing-table lookups, firewalls, label
switching, and differentiated services. This paper presents a packet classifier that can classify
packets by using 2 × n memory references in the worst case, assuming the length of the
header is nbytes, through a simple operation regardless of the number of classification rules
(i.e., filters). Packet classification is modeled as a point-location problem in computational
geometry by introducing a function that sieves the filters to reduce an n-dimensional problem
to an n−1 dimensional problem. A partial evaluator for the sieve function and local and global
optimizations are described. A one-dimensional solution to the point location problem can
be naturally expanded into a multidimensional problem, and a real-time packet classifier can
be implemented for a high-speed network with a relatively small amount of required memory.
Preliminary evaluation showed that this classifier can classify packets using only 708KB of
memory and an average of 16.8 memory accesses per packet for 14-byte headers and 10,000
rules.

1. Introduction

As the number of Internet users continues to
expand rapidly, networks continue to grow in
scale and considerable R&D effort is being fo-
cused on high-speed IP routers1)∼3). Higher
speed is particularly needed to enable routers
to perform their primary function — routing-
table lookups — faster. Backbone routers that
can accommodate 622 Mbps and 2.4 Gbps pack-
ets, for example, must be able to quickly search
large-scale routing tables (40,000 or more en-
tries).

At the same time there is a cry for greater se-
curity, and packet filtering is becoming increas-
ingly important as Internet usage becomes more
diversified4). Packet filtering is generally done
to ensure security by having the router scru-
tinize the packet header, and then, for exam-
ple, relay the packets destined for a web server
or discard packets originating from a particu-
lar subnetwork, based on the contents of the
header. This filtering capability has other func-
tions besides security. It enables service content
or quality to be tailored to customers, resulting
in differentiated services that have a variable-
price structure or variable content. This cus-
tomization requires switching services or alter-
ing the allocation of network resources accord-
ing to the contents of the packet header.

Among the filtering functions, the ability to
analyze the header and determine the appro-

† NTT Network Innovation Laboratories

priate processing is provided by packet classi-
fiers. Packet classifiers are widely used in many
network facilities for routing table lookup,
packet filtering, avoiding network-wide con-
tention such as the parking-lot problem5), and
for several kinds of label switching6). The se-
ries of conditions for packet classifiers are set
as packet-classification rules. A router used in
a large-scale network or for fine-grained classi-
fication, must be able to handle 1,000 or more
such rules. Furthermore, as uses of packet clas-
sification proliferate, there will be a growing de-
mand for a longer header field.

In this paper we propose a high-speed packet-
classifier that can be applied even when a long
header and numerous rules are used. The num-
ber of memory references for packet classifica-
tion is independent of the number of rules. For
a header that is nbytes long, packets can be
classified by using 2 × n memory references in
the worst case.

In this paper we describe a fast method
that uses little memory (e.g., less than one
megabyte) that is suitable for practical use.
This method includes a function that sieves the
rules according to a field in the packet header to
decompose the packet-classification problem in
the same way as for a point-location problem in
computational geometry7), uses a partial evalu-
ator8) for the sieve function, and uses local and
global optimizations.

The rest of the paper is organized as follows.
We precisely formulate the packet classifier in
Section 2. In Section 3, we explain our ap-

166



Vol. 42 No. 2 A Systolic Sieve Array for Real-time Packet Classification 167

proach, and in Section 4 we describe the partial
evaluation method based on partitioning do-
mains and header fields. Section 5 describes the
proposed packet-classifier which interprets the
data generated by the partial evaluation and by
local and global optimizations. In Section 6, we
present some preliminary experimental results.
In Section 7, we briefly discuss related work.

2. Packet Classifiers

2.1 Functional Overview
The header field that is analyzed to classify

packets is called the key field or simply the key.
The rules for classifying packets are called fil-
ters. A filter consists of any number of pred-
icates that the keys should fulfill. An ordered
set of filters is called a filter-set, and is repre-
sented by a filter-identifier set. If all keys of a
packet P fulfill their associated predicates for a
filter f , then f is said to be a feasible filter of
P . If any key of P does not fulfill a predicate
of a filter f , then f is an infeasible filter with
respect to P . A packet classifier is a function
that examines whether a key fulfills its associ-
ated predicate for all filters and selects a set of
all feasible filters. That is, it identifies filter-set
F′ that contains all feasible filters in F pertain-
ing to P when filter-set F and packet P are
given. In cases where only one filter must be
determined by routing table lookup or filtering,
one filter can be selected from F′ according to
the predetermined order of filters (for example,
in the description order, or in the order of filter
cost specified by the operator). In cases where
the filters in F are arranged in description or-
der, if that same order is preserved in F′, then
the first filter in F′ can be selected. If the fil-
ters in F are arranged by prefix length (that is,
net-mask length), then longest-prefix-matching
is performed. In the implementation described
below, it is assumed that when a filter is se-
lected from F′, the filters in F are arranged in
description order.

2.2 Matching Schemes
The predicates can be specified using any of

three matching schemes: exact matching, prefix
matching, or range matching. Assuming p and
x are a predicate and its associated key value,
respectively, these schemes are defined as fol-
lows.
• Exact matching

The matching is successful if x equals p.
• Prefix matching

Assuming v and pl are a prefix and its

length, respectively, the upper pl bits of
x should be v. In prefix matching for
destination IP addresses, for example, the
predicate 123.45.67/24 matches the des-
tination IP address whose upper 24 bits
are 123.45.67. When multiple predicates
are successful, the predicate that has the
longest prefix-length is selected in longest-
prefix matching.

• Range matching
Predicates are represented as a set of pairs
of keys. Assuming p = {[v11, v12], [v21, v22],
..., [vn1, vn2]}, if there exists an i such that
vi1 ≤ x ≤ vi2, the matching of x and p
is successful. For the range matching with
the predicate {[10, 30], [50, 60]}, x matches
p if 10 ≤ x ≤ 30 or 50 ≤ x ≤ 60. The
predicates for the range matching are useful
to specify the conditions that the source or
destination port numbers should satisfy.

3. Packet Classifier Using a Filter-
sieve Function

3.1 Point-Location Problem
A packet classifier that deals with n keys

is modeled as an n-dimensional point-location
problem in computational geometry. The n-
dimensional point-location problem is described
as follows: given a point in n-dimensional space,
and a set of m n-dimensional objects, find the
object that the point belongs to. In a packet
classifier, a packet corresponds to the point
and m filters correspond to the m objects.
While most conventional point-location prob-
lems must deal with the case of non-overlapping
objects and use range matching in each dimen-
sion, the packet classifier should deal with the
case of overlapping filters (i.e., a key might
match the corresponding predicates of multi-
ple filters) and use prefix matching and exact
matching as well as range matching.

3.2 Filter-sieve Function
A function that uses key value xk for filter-set

F to remove infeasible filters and return filters
whose predicates corresponding to the key are
true is called a sieve (Fig. 1), represented here
by sieve(F, k, xk).

The sieve function reduces an n-dimensional
point-location problem to an n− 1 dimensional
problem. The result of the packet classifier
can be obtained by applying the functions to
a filter-set n times.

3.3 SIERRA: Systolic Sieve Array
Figure 2 shows that if all key values are



168 IPSJ Journal Feb. 2001

given as inputs in a pipelined sieve array, a
filter-set in which predicates for all keys are true
is derived — in other words, the filter-set F′ —
as the output of the final stage of the pipeline.
This is represented as

F′ = Fn−1, provided that
F0 = sieve(F, 0, x0),
F1 = sieve(F0, 1, x1), ...,
Fn−1 = sieve(Fn−2, n− 1, xn−1).
A packet classifier can be obtained by con-

structing a pipeline called a systolic sieve ar-
ray (SIERRA) with sieve processors where each
processor executes a sieve function for each key,
as shown in Fig. 3. In this figure, a “chunk” is
a data-set generated by the partial evaluation
of a sieve function (described below), while an
“instruction” specifies the address of the chunks

Fig. 1 Sieve: a filter classifier with a key value.

Fig. 2 Finding feasible filters with a sieve array.

Fig. 3 Conceptual diagram of the systolic sieve array.

and is an instruction word that the sieve proces-
sor interprets. Given an instruction and a key, a
sieve processor reads a chunk and generates the
next instruction that will be sent to the sieve
processor in the next stage of the pipeline. The
processor in the final stage outputs an instruc-
tion that includes a pointer to the result of the
packet classification. The key values of the in-
coming packets are successively supplied to the
processors (Fig. 3), and each time an instruction
word is supplied with the arrival of a packet at
the first processor, the system as a whole per-
forms a systolic action9) within the time it takes
for one sieve function to execute. Sieve proces-
sors read two chunk memory words to execute
one sieve function. By pipelining their memory
accesses, we can implement a processor that can
produce an output for each memory access.

4. Partial Evaluation of a Sieve Func-
tion

4.1 Filter-sets
Here, we consider a filter-set, such as that

shown below, consisting of filters in which
all the fields have been converted to eight-bit
keys. This filter-set is represented by F =



Vol. 42 No. 2 A Systolic Sieve Array for Real-time Packet Classification 169

{1, 2, ...,m}. Each element of F is a filter iden-
tifier that is affixed at the beginning of each
filter.

1 : p1,1 p1,2 ... p1,n

2 : p2,1 p2,2 ... p2,n

：
f : pf,1 pf,2 ... pf,n

：
m : pm,1pm,2... pm,n

Here, pf,i is the i-th predicate of f , corre-
sponding to the i-th key. In cases where the
packet-field length is not eight bits, the packet-
filed is converted to 8-bit key by concatenation
or partitioning when necessary as follows.
(1) Flag bit

Multiple bits in the same byte combine to
become one key. For example:

f1: p1,1 [x1 = 1] p1,2 [x2 = 0]
⇓

f1′ : p1′,1 [x1′ = (10)2]

Here, x1 and x2 are one-bit flags, and x1′

is the value of a one-byte key where bit 0
of x1′ is x2 and bit 1 is x1.

(2) Multi-byte fields
Multi-byte fields are partitioned into mul-
tiple keys. For example:

f1: p1,1 [x1 > 300]
⇓

f1′ : p1′,1 [x1′ = 1] p1′,2 [x1′′ > 44]
f1′′ : p1′′,1 [x1′ > 1] p1′′,2 [x1′′ ≥ 0]

Here, x1 is the value of a two-byte field and
x1′ and x1′′ are the values of one-byte keys
where x1′ is the upper byte of x1 and x1′′

is the lower byte.
(3) Multi-byte prefixes

Multi-byte prefixes are partitioned into
multiple keys and are represented by in-
equalities. For example:

f1: p1,1 [x1 = (112∗)16]
⇓

f1′ : p1′,1 [x1′ = (11)16]

p1′,2 [(20)16 ≤ x1′′ ≤ (2f)16]

Here, * is a wildcard, x1 is the value of a
two-byte prefix field, and x1′ and x1′′ are
the values of one-byte keys where x1′ is the
upper byte of x1 and x1′′ is the lower byte.

Because the key value is 0 ≤ xi ≤ 255, the

pf,i[xi] is represented by a 256-bit vector whose
elements are either T (true) or F (false). Any
point on this vector where the value changes
from T to F or from F to T is called a bound-
ary; the boundary is represented by the xi

value that follows the change. A pair including
the list of all boundaries B and a pf,i[0] value
〈B, pf,i[0]〉 is called a predicate descriptor; it
is used to denote predicate pf,i. In the follow-
ing, this predicate descriptor is used to spec-
ify predicates of all rules in the filter-set. This
means that filter predicates can be applied to
three types of matching schemes: exact match-
ing, prefix matching, or range matching.

In the example shown below, the predicate
descriptors of p1,0 and p2,0 are 〈(2), F 〉 and
〈(3, 6), F 〉, respectively.
[Fex1 = {f1, f2}: Filter-set example 1]

f1: p1,0 [x0 ≥ 2] p1,1 [x1 = 6]
f2: p2,0 [3 ≤ x0 ≤ 5] p2,1 [x1 ≥ 5]

4.2 Domain Partitioning
The domain of the key value is partitioned

into intervals at all boundaries of all predicates.
An ordered set of key values within each inter-
val is called a subdomain. The set of all subdo-
mains has the following properties.
(1) Disjoint: There are no pairs of subdomains

that have common elements.
(2) Direct sum: The union of all subdomains

equals the original domain.
(3) Unique: When a subdomain is determined,

the filter-sets for which a T predicate is
given are uniquely determined.

First, consider the partial evaluation of func-
tion sieve(F, i, xi) by domain partition for the
simple filter-set Fex1.
Sieve(Fex1, 0, x0) is represented as shown be-

low. When the conditions in parentheses are
true, the set in that row is returned as a result.
sieve({f1, f2}, 0, x0)

=




{} ((x0 ≥ 2) ∧ (3 ≤ x0 ≤ 5))
{f1} ((x0 ≥ 2) ∧ (3 ≤ x0 ≤ 5))
{f2} ((x0 ≥ 2) ∧ (3 ≤ x0 ≤ 5))
{f1, f2} ((x0 ≥ 2) ∧ (3 ≤ x0 ≤ 5))

Partial evaluation (or partial computation)
is a systematic method of generating an ef-
ficient program based on a given program
and some of its data8). Partial evaluation of
sieve(Fex1, 0, x0) essentially means that, before
we know the value of x0, the aforementioned
evaluation is pursued as far as possible so that
the remaining evaluation needed to derive x0 is



170 IPSJ Journal Feb. 2001

Fig. 4 Example of domain partition.

simplified. The result of the partial evaluation
is represented as sieveFex1,0(x0).

Consider the following example of a partial
evaluation of sieve(Fex1, 0, x0). In this exam-
ple, we assume for simplicity that the key is
three bits long. In this case, domain D0 of x0

is D0 = {0, ..., 7}.
As shown in Fig. 4, D0 can be partitioned

into two intervals, I0
1,0 and I1

1,0, in accordance
with the values that can be derived for p1,0 (i.e.,
T or F ). Also, D0 can be partitioned into three
intervals based on p2,0 in the same way: I0

2,0,
I1
2,0, and I2

2,0. When the x0 domain is parti-
tioned by all interval boundaries, four subdo-
mains are formed: D0

0 = {0, 1}, D1
0 = {2},

D2
0 = {3, 4, 5}, and D3

0 = {6, 7}. Scrutinizing
the p1,0 and p2,0 values of each subdomain, a
clear filter can be discerned such that when the
x0 value is present in a subdomain, the packet
cannot be matched regardless of the value of x1.
For example, F is in both p1,0 and p2,0, so nei-
ther f1 nor f2 match regardless of the value of
x1. The subdomain filter-set in Fig. 4 excludes
this kind of filter. Moreover, domain descrip-
tors are data that provide subdomain identi-
fiers based on key values, and are derived from
a series of subdomain identifiers.

From Fig. 4, F0 = sieve{f1,f2},0(x0) becomes

F0 =




{} (x0 ∈ D0
0 = {0, 1})

{f1} (x0 ∈ D1
0 = {2})

{f1, f2} (x0 ∈ D2
0 = {3, 4, 5})

{f1} (x0 ∈ D3
0 = {6, 7})

4.3 Sieve-Unfolding Tree
Given a filter-set F, subdomains and their

filter-sets can be obtained by the partial evalu-
ation of sieve(F, 0, x0). Then, for each subdo-

Fig. 5 Sieve unfolding.

main, a sieve function that uses the filter-set of
the subdomain as an input argument is made.
For example, in the case of filter-set Fex1 men-
tioned above, the function sieve({f1}, 1, x1) is
made for subdomain D1

0 = {2}. Sieve functions
for all subdomains are made in this manner and
are partially evaluated. As a result, the tree
shown in Fig. 5 can be obtained. It is called
a sieve-unfolding tree, and each of its nodes is
called a chunk.

A chunk is a data-set that results from a
partial evaluation of a sieve function, and it is
represented as chunk(F, k) for sieve(F, k, xk).
The recursive procedure used to make a sieve-
unfolding tree is as follows. Calling this
procedure with F and 0 of the input argu-
ments produces a sieve-unfolding tree in which
chunk(F, 0) is the root.

[C(F, k): the procedure that makes the
chunk(F, k)]
(1) When k is greater than or equal to the num-

ber of keys, return to the caller the pointer
to F.

(2) Find the subdomain for the k-th predicate
of F.

(3) Find filter-set S that yields true predicates
for each subdomain.

(4) Call procedure C(S, k+ 1) for subdomains
in which S is not empty.

(5) Create the data needed to execute sieves
(called chunks) by using the results of Steps
(2) and (4).

Chunks consist of domain descriptors (DDs)



Vol. 42 No. 2 A Systolic Sieve Array for Real-time Packet Classification 171

Fig. 6 Naive implementation of a chunk.

and unfolding tables (UTs). The DDs are data
used to convert key values into subdomain iden-
tifiers, and the UTs provide pointers to sieves
for the next key. Because the key values are
eight bits long, the values of subdomain identi-
fiers range from 0 to 255. A simple data struc-
ture for implementing chunks when using a 32-
bit-word memory is shown in Fig. 6.

5. Optimization

5.1 Executing Sieve-unfolding Trees
When chunks (Fig. 6) are implemented for all

sieves, the sieves are executed when a key is
given; one word from the DD corresponding to
that key value is read and a word from the UT
is read based on that key value; then the sieve
of the next key is executed. By repeating these
two-word memory references for each sieve (i.e.,
for each key), one finds whether feasible filters
are obtained or not regardless of the number
of filters. Note, however, that each chunk re-
quires 256 + 4δ bytes (where δ is the number
of subdomains), and that the number of mem-
ory references is twice the number of keys. In
cases where the number of keys is large (or
when the number of generated chunks is large),
these problems become serious from a practical
standpoint. The next two sections describe lo-
cal and global optimization methods that over-
come these problems.

5.2 Local Optimization
The subdomain identifier can be directly

found from the DD when the DD is
a vector of subdomain identifiers such as
[0, 0, 1, 2, 2, 2, 3, 3], as in Fig. 4. It can also
be found from the DD if it includes the bit
string [0, 0, 1, 1, 0, 0, 1, 0] representing the inter-
val boundaries (i.e., ‘1’ if the subdomain iden-

Fig. 7 Optimization 1 (a): bitmap representation for
DD.

tifier has been changed and ‘0’ if it has not
been changed). In this bit string, for exam-
ple, one obtains the subdomain identifier asso-
ciated with each bit by counting the number of
1’s from bit 0 to each subsequent bit. This bit
string representation makes it possible to com-
press the domain descriptor by using the fol-
lowing bitmap representation in a manner sim-
ilar to Degermark’s method10) used to represent
prefix trees.

Figure 7 shows the data structure of a chunk
formed from a subdomain identifier obtained by
one lookup in the 32-bit-word memory. This
domain descriptor uses a pair consisting of a
bitmap that can partition the above bit string
into eight-bit increments and an offset denoting
the subdomain identifier of the initial bit. In
this case, one word in the DD is selected by the
upper four bits of the key. When bit 3 of the key
is a ‘1’, an upper half-word offset and a bitmap
are selected; when bit 3 is a ‘0’, a lower half-
word offset and a bitmap are selected. Bitmap
bit locations are selected using the three least
significant bits of the key. The offset is added
to the number of 1’s from bit 0 to the selected
bit in the bitmap, and the resultant value is
the subdomain identifier. By using this data
structure, we can achieve a DD memory of only
64 bits, just 1/4 the size of the memory needed
for the DD shown in Fig. 6.

When the number of subdomains is small, the
memory can be reduced even more. For exam-
ple, Fig. 8 shows an index-type DD data struc-
ture that can be used when the number of sub-
domains is four or less. In this case, the value
of the key providing the subdomain boundary
is stored. When the DD is interpreted, the sub-



172 IPSJ Journal Feb. 2001

Fig. 8 Optimization 1 (b): index representation for
DD.

domain identifier is obtained by comparing the
key value against all the boundary values to de-
termine which boundaries the value is between.

5.3 Global Optimization
Redundant chunks in the sieve-unfolding tree

are removed to reduce the amount of chunk
memory and the number of memory references
by analyzing the inter-chunk dependency in the
tree.

(1) Sieve share
Figure 4 shows that there are cases where the

filter-sets introduced with the next-stage sieve
are equivalent even though the subdomains dif-
fer. Subdomains of this kind are detected in the
partial evaluation of the sieve, and memory is
reduced by sharing the next-stage sieve. More-
over, if there are multiple chunks(F, k) in the
sieve-unfolding tree, they are all removed ex-
cept for one chunk(F, k) that is shared by their
parent chunks.

(2) Sieve skip
Wildcards are commonly used in the repre-

sentation of filters. When they are, chunks that
have only one subdomain might appear in the
sieve-unfolding tree. The results of the interpre-
tation of the sieve-unfolding tree do not change
even if this type of chunk is skipped, so this op-
timization reduces the amount of memory and
the number of memory references.

(3) Sieve concatenation
In cases where the number of keys is large,

only one filter is left after processing the filter-
set through a number of stages in the sieve-
unfolding tree. In these cases, a determination
is made at the following stage to see if the re-
maining key fulfills all the filter’s predicates.
Especially in cases where the predicate of the
remaining key indicates a specific value and not
a range, the values needed to meet the require-
ments of the key (index) are incorporated into
one word by using the DD shown in Fig. 9 to
produce a chunk that can process multiple keys.

Fig. 9 Optimization 4: DD for sieve concatenation.

This means that multiple chunks are integrated
into one chunk, thereby reducing the amount of
memory and the number of memory references.

6. Evaluation

6.1 Comparison with Multi-bit Trie
The multi-bit trie11) has a simple data struc-

ture that enables high-speed packet classifica-
tion. For example, given the simple filter-set
shown below, an 8-bit trie is constructed as
shown in Fig. 10.
[Fex2 = {f1, f2, f3, f4}: Filter-set example 2]

f1: p1,0 [x0 = 2] p1,1 [x1 = 1]
f2: p2,0 [x0 = 2] p2,1 [x1 = 2]
f3: p3,0 [x0 = 4] p3,1 [x1 = 3]
f4: p4,0 [x0 = 4] p4,1 [x1 = 4]

The problem with a multi-bit trie is that it
requires a lot of memory in the presence of fil-
ters of the form (*, *, port-num); i.e., filters
in which the first few fields are wildcards. For
example, consider the following filter-set.
[Fex3 = {f1, f2, f3, f4, f5}: Filter-set example
3]

f1: p1,0 [x0 = 2] p1,1 [x1 = 1] p1,2 [∗]
f2: p2,0 [x0 = 2] p2,1 [x1 = 2] p2,2 [∗]
f3: p3,0 [x0 = 4] p3,1 [x1 = 3] p3,2 [∗]
f4: p4,0 [x0 = 4] p4,1 [x1 = 4] p4,2 [∗]
f5: p5,0 [∗] p5,1 [∗] p5,2 [x2 = 3]

The 8-bit trie for Fex3 is shown in Fig. 11.
On the other hand, a sieve-unfolding tree for
Fex3 can be reduced to the small tree with small
nodes shown in Fig. 12 by the local and global
optimizations.

6.2 Experimental System
Five types of compilers were implemented.

Each compiler was endowed with a differ-
ent function (as shown below) and generated
chunks, which were executable code. In addi-
tion, two systems were constructed: an execu-
tion system that interpreted the chunks gener-
ated by the compilers, and a verification system
that checked to make sure the original filter be-



Vol. 42 No. 2 A Systolic Sieve Array for Real-time Packet Classification 173

Fig. 10 Multi-bit trie for Example 2.

Fig. 11 Multi-bit trie for Example 3.

came a feasible filter when a packet consisting
of key values satisfying the predicates of any fil-
ter of the original filter-set was generated and
executed.
(1) Naive implementation: Without optimiza-

tion.
(2) Optimization 1: Local optimization.
(3) Optimization 2: (2) + sieve share
(4) Optimization 3: (3) + sieve skip
(5) Optimization 4: (4) + sieve concatenation
6.3 Memory Requirements and Refer-

ences
After generating executable code by using the

compilers, the amount of memory and the av-
erage number of memory references were deter-
mined for three different cases using a single
sieve processor and 32-bit-wide memory.

Fig. 12 SIERRA chunks for Example 3.

(1) IP routing-table lookup
A filter-set consisting of four-byte keys was
configured using a snapshot made on July
20, 1998 of the routing data publicly avail-
able on the Web as part of the Internet
Performance Measurement and Analysis
project12). As shown in the first column of
Table 1, this snapshot included large-scale
routing tables, ranging from 3,073 (Paix) to
41,568 (Mae-East) routes. The longest pre-
fix matching was applied to these tables.

(2) Source-destination filtering
First, entries were selected at random from
the routing table of Mae-East in Table 1
and regarded as destinations. Multiple
source addresses were selected at random
from the same routing table and paired
with a destination to form a filter. The
number of source addresses paired with
the same destination was determined ran-
domly.

(3) Packet classification for layer-four switch-
ing
In addition to the arrangements given for
Case (2), a 14-byte filter was also used; it
consisted of a TCP/UDP source and des-
tination port numbers (two bytes each), a
protocol field (one byte), and a TCP flag
field (one byte)13). The probability of a
wildcard or a specific value being set in the
other fields besides the source and destina-
tion fields was 50%. When specific values
were used, they were also determined ran-
domly.

The experimental results for each filter-set
are presented in Tables 1–3. Table 1 shows that
routing-table lookups after Optimizations 3 and
4 used 408 KB of memory with an average of
3.9 memory accesses (8 accesses in the worst



174 IPSJ Journal Feb. 2001

Table 1 Memory requirements and references in IP routing-table lookup.

Filter-set Naive Optimization 1 Optimization 2 Optimization 3 Optimization 4
Name Length Size Ref/P Size Ref/P Size Ref/P Size Ref/P Size Ref/P

Mae-East 41,568 15,129 5.7 841 5.7 781 5.7 408 3.9 408 3.9
PacBell 22,837 8,430 5.7 503 5.7 474 5.6 269 3.9 269 3.9

Mae-West 6052 2,473 5.3 134 5.3 131 5.3 63 3.8 63 3.8
Paix 3073 1,232 5.4 92 5.4 91 5.3 63 3.9 63 3.9

Length: number of filters
Size: memory size in KB for all chunks; Ref/P: number of memory references per packet

Table 2 Memory requirements and references in source-destination filtering.

Filter-set Naive Optimization 1 Optimization 2 Optimization 3 Optimization 4
Width (B) Length Size Ref/P Size Ref/P Size Ref/P Size Ref/P Size Ref/P

8 100 94 10.9 7 10.9 7 10.9 6 9.8 5 9.5
8 1,000 655 12.3 52 12.3 52 12.3 43 11.1 42 11.1
8 10,000 6,572 12.4 516 12.4 514 12.4 420 11.2 413 11.2

Width: number of key fields; Length: number of filters
Size: memory size in KB for all chunks; Ref/P: number of memory references per packet

Table 3 Memory requirements and references in packet classification for layer-four switching.

Filter-set Naive Optimization 1 Optimization 2 Optimization 3 Optimization 4
Width (B) Length Size Ref/P Size Ref/P Size Ref/P Size Ref/P Size Ref/P

14 100 254 17.2 15 17.2 15 17.2 11 16.3 9 15.1
14 1,000 2,240 18.5 124 18.5 124 18.5 91 18.2 71 16.9
14 10,000 22,342 18.5 1,233 18.5 1,231 18.5 900 18.1 708 16.8

Width: number of key fields; Length: number of filters
Size: memory size in KB for all chunks; Ref/P: number of memory references per packet

case), even for the Mae-East filter-set, which
contained more than 40,000 entries. When fil-
tering of the source/destination pairs was im-
plemented (Table 2), packet classification after
optimization 4 was performed even when there
were more than 10,000 filters using 413 KB of
memory and an average of 11.2 memory ac-
cesses (16 accesses in the worst case). When
the same filtering conditions were set as in or-
dinary routing (Table 3), the chunk memory
was implemented by using 708 KB of memory
after optimization 4, even when a 10,000-filter
access-control table was used. In this case, the
average number of memory accesses was 16.8
(28 in the worst case).

The effects of the optimizations are clearly
shown in Tables 1–3. Optimization 1 (local op-
timization) dramatically reduced the required
memory capacity. Optimization 2 (sieve shar-
ing) reduced the memory capacity when the
number of filters was large. Optimization 3
(sieve skip) greatly reduced both memory ca-
pacity and the number of memory accesses.
Finally, Optimization 4 (sieve concatenation)
greatly reduced the memory capacity needed for
long keys and the number of memory accesses.

Table 4 Execution time for a packet classification
using a 450-MHz Pentium II PC.

Filter-set Width (B) Length Time (µs)
Mae-East 4 41,568 0.76
src-dest 8 10,000 1.46
layer-4 14 10,000 2.13

Width: number of key fields
Length: number of filters
Time: execution time per packet

6.4 Execution Time
Although the sieve processor is designed as

a dedicated processor to be executed in a
pipelined fashion, general-purpose processors
like Intel Pentiums can be used to simulate the
sieve processor (i.e., interpret the chunks of the
sieve-unfolding tree). The execution time for
one packet classification using the largest filter-
set in each of Tables 1–3 is presented in Ta-
ble 4. Local and global optimizations were ap-
plied to the chunks used in the experiment. In
this experiment, a PC with a 450-MHz Intel
Pentium II processor was used to simulate the
sieve processor.

The instruction word for the sieve processor
is shown in Fig. 13. When simulating the sieve
processor, general-purpose processors requires a
lot of time for instruction decoding because of



Vol. 42 No. 2 A Systolic Sieve Array for Real-time Packet Classification 175

Fig. 13 Instruction word for sieve processors.

the large amount of bit manipulation. However,
a real-time (i.e., line-speed) packet classifier can
be implemented using a general-purpose pro-
cessor when the transmission speed of the com-
munication lines is less than 155 Mbps, since
a packet can be classified within about 2µs
(i.e., at a rate of about 0.5 Mpps (Mega packets
per second)), when the packet length exceeds
40 bytes.

7. Related Work

A number of schemes have been proposed
for high-speed searching for longest-matching
prefixes10),14)∼17). In one approach, for exam-
ple, associative memory is used for each prefix
length, and retrievals are performed as a sin-
gle concurrent associative access14). This ap-
proach is simple, but is difficult to apply when
the number of filters or keys is large, since asso-
ciative memories require much more hardware
than random access memories. More recently, a
number of powerful, high-speed methods have
been proposed in which longest-prefix match-
ing is implemented, not with special hardware,
but by software10),16). Degermark, et al.10) pro-
posed a sophisticated method that creates a
transform of a binary lookup tree into a data
structure that can find a route using four ta-
ble lookups. The representation also turns out
to be extremely compact, yielding tables that
often fit into the processor L2 cache.

A multi-bit trie, or M-ary trie11), requires
only n memory references in exact matching
of n-byte keys if there are a sufficient num-
ber of tables having 256 entries. Extensions of
the multi-bit trie have been proposed that can
be applied to prefix matching and to multiple
key fields10),15). A multi-bit trie with multi-
ple key fields requires a lot of memory, though,
when filters of the form (*, *, port-num) are
used; i.e., filters in which the first few fields are
wildcards. The amount of required memory in-
creases quickly when such wildcards are used
since the wildcards mean all entries of the table
must have pointers to their child-tables. The
packet classifier proposed in this paper can be

considered an extended multi-bit trie. It sub-
stantially reduces both the amount of memory
and the number of memory references used for
execution by performing a partial evaluation us-
ing key-field and domain partition in advance,
and by using local and global optimizations.

The routing-table lookup and filtering prob-
lems can be considered a generalized packet-
classification problem and handled using a com-
putational geometry approach in the same way
as a point-location problem in multidimensional
space18),19). A two-dimensional point-location
problem is one in which the area where p is
located within a predetermined area is found
when the coordinates of point p on a map are
given7). The coordinates of p are associated
with the packet key field, while the map domain
is associated with the range defined by the fil-
ters. In the case of two dimensions, where m
is the number of filters, an algorithm is avail-
able for deriving the area in which p belongs;
this algorithm uses 0(m) memory in 0(log(m))
time7). The number of combinations increases
rapidly, though, when the number of dimen-
sions is increased. In the case of n dimensions,
an algorithm is available for finding a solution
using 0(mn) memory in 0(log(m)) time7). How-
ever, simply applying this approach as is to
the packet-classification problem, say a case in
which there are 10,000 filters and 4 key fields,
would require 1012 B (= 1 TB) of memory, so it
is not practical.

Lakshman and Stiliadis18) proposed a divide-
and-conquer approach in which calculations are
executed for each dimension in parallel, and re-
sults are then combined. This approach uses
only one bit to represent a filter in each dimen-
sion and executes multiple filters at the same
time by using bit-level parallelism. However,
�m/w�memory references are needed to process
each dimension, where w is the memory word
width and m is the number of filters.

The scheme we propose uses a computa-
tional geometry approach to treat the packet-
classification problem as a point location in a
multidimensional space problem. The main dif-
ference between it and previous schemes is that
the amount of required memory and the com-
putational complexity at execution are substan-
tially reduced by performing a partial evalu-
ation using key-field and domain partition in
advance and by using four types of optimiza-
tions. As a result, a one-dimensional solution
to the point-location problem can be naturally



176 IPSJ Journal Feb. 2001

expanded into a multidimensional problem, and
a single, simple computational mechanism can
be achieved regardless of the key length.

While the Lakshman scheme18) does the
lookups in parallel and then does an AND oper-
ation, our scheme does them in pipelined fash-
ion. In other words, our scheme uses the results
of partial evaluations of the initial dimensions
to reduce the computation for the next dimen-
sion, while the Lakshman scheme treats each
dimension independently. Thus, our scheme
should require less computation and memory.

Experimental results have shown that only
71 KB of memory is required for 1,000 filters
and only 708 KB of memory is needed for 10,000
filters when a 14-byte key consisting of six fields
(including two 4-byte IP addresses, two 2-byte
port numbers, a 1-byte protocol field, and a
1-byte TCP flag field)13) is used. These val-
ues are small compared to the requirements of
the schemes described in Ref. 18) (a 640 KB
memory capacity system capable of support-
ing up to 5 fields and 512 filters) and Ref. 19)
(where 3,951 KB of memory is required to sup-
port 4 fields and 10,000 filters). Furthermore,
the pipelining in a systolic array enables pack-
ets to be continuously classified during a single
memory reference.

The scheme called “Recursive Flow Classifi-
cation20)”, or RFC, has been recently presented
just after the earlier version of this paper was
presented at a workshop21). The RFC gener-
alizes the Lakshman sheme and uses both of
parallel and piplened fashions. The significant
differences between SIERRA and RFC, are: (1)
RFC uses all filters for taking the projections of
each dimension, while SIERRA uses them only
for the first dimension and uses the reduced fil-
ter sets that can be obtained by repeating the
removal of infeasible filters for the successive di-
mensions. As a result, the memory requirement
of SIERRA can be less than that of RFC, be-
cause the more filters are used, the more mem-
ory is required. (2) RFC’s optimization is based
on the merge of the filters, resulting in losing
the distinction between each filter. SIERRA
preserves the distinction because its optimiza-
tion is based on the compression and sharing of
the data.

Although we should make more analyses
of memory requirements and precomputation
time, we can state the followings from the re-
sults of some experiments we have made us-
ing actual routing tables of four major NAPs,

i.e., MAE-east, MAE-west, PacBell and Paix.
SIERRA can be useful to some applications in
which tables do not change frequently and in
which the delay of updating the tables is tolera-
tive, though it requires a lot of precomputation
time because of its optimization.

8. Conclusion

We have proposed a high-speed packet classi-
fication scheme that can be applied even when
the headers are long and many filters are used to
analyze the header. It uses a one-dimensional
array of sieves to analyze each field and to elim-
inate filters that have no possibility of match-
ing. By processing packets repeatedly through
the array, filters with fields that match all keys
are detected. The amount of memory and com-
putational complexity at execution are substan-
tially reduced by partially evaluating the sieve
function in advance and by using four types of
optimization. As a result, a single, simple com-
putational mechanism can be achieved regard-
less of the key length. Assuming an analysis-
field length of nbytes, this mechanism can an-
alyze packets by using 2×n memory references
in the worst case and by a simple operation re-
gardless of the number of filters.

Using less than one megabyte of memory and
relatively few memory accesses, this method
can perform longest-prefix-entry lookups from
routing tables with more than 40,000 entries,
and filtering with 14-byte key fields (consisting
of source and destination IP addresses, two port
numbers, a protocol field, and a TCP-flag field)
based on 10,000 filters. Moreover, packets can
be continuously classified during a single mem-
ory reference by operating the sieve processor
as a systolic array.

Execution using the results of sieve-function
partial-evaluation is straightforward, so hard-
ware implementation of the processor should
be relatively simple. Based on these promis-
ing results, we intend to implement the sieve
processor on an LSI chip and develop a packet-
classification engine that can be incorporated
into high-speed switches, routers, workstations,
and PCs.

References

1) Asthana, A., Delph, C., Jagadish, H.V.
and Krzyzanowski, P.: Towards a Gigabit IP
Router, J. High-Speed Networks, Vol.1, No.4,
pp.281–288 (1992).

2) Tantawy, A., Koufopavlou, O., Zitterbart, M.



Vol. 42 No. 2 A Systolic Sieve Array for Real-time Packet Classification 177

and Abler, J.: On the Design of a Multigigabit
IP Router, J. High Speed Networks, Vol.3, No.3,
pp.209–232 (1994).

3) Partridge, C., Carvey, P.P., Burgess, E., et al.:
A 50-Gb/s IP Router, IEEE/ACM Trans. Net-
working, Vol.6, No.3, pp.237–248 (1998).

4) Cheswick, W.R. and Bellovin, S.M.: Firewalls
and Internet Security, Addison-Wesley (1994).

5) Shreedlhar, M. and Varghese, G.: Efficient
Fair Queuing Using Deficit Round Robin, Proc.
SIGCOMM 95, pp.231–242 (1995).

6) Davie, B., Doolan, P. and Rekhter, Y.: Switch-
ing in IP Networks: IP Switching, Tag Switch-
ing, and Related Technologies, Morgan Kauf-
mann (1998).

7) de Berg, M., van Kreveld, M., Overmars, M.
and Schwarzkoph, O.: Computational Geome-
try – Algorithms and Applications, Springer-
Verlag (1997).

8) Futamura, Y., Nogi, K. and Takano, A.:
Essence of Generalized Partial Computation,
Theoretical Computer Science, Vol.90, pp.61–
79 (1991).

9) Kung, H.T.: Why Systolic Architectures?,
IEEE Computer, Vol.15, No.1 (1982).

10) Degermark, M., Brodnik, A., Carlsson, S.
and Pink, S.: Small forwarding tables for fast
routing lookups, Proc. SIGCOMM 97, pp.3–14
(1997).

11) Knuth, D.E.: Sorting and Searching, The
Art of Computer Programing, Vol.3, Addison-
Wesley (1973).

12) Merit Network and Michigan University, In-
ternet Performance Management and Analysis
(IPMA) Project.
http://www.merit.edu/ipma/

13) Comer, D.E.: Internetworking With TCP/IP,
Vol.I, Prentice Hall (1991).

14) McAuley, A.J. and Francis, P.: Fast Routing
Table Lookup Using CAMs, Proc. IEEE INFO-
COM ’93, pp.1382–1391 (1993).

15) Doeringer, W., Karjoth, G. and Nassehi,
M.: Routing on Longest-Matching Prefixes,
IEEE/ACM Trans. Networking, Vol.4, No.1,

pp.86–97 (1996).
16) Waldvogel, M., Varghese, G., Turner, J. and
Plattner, B.: Scalable high-speed IP routing
lookups, Proc.SIGCOMM 97, pp.25–36 (1997).

17) Srinivasan, V. and Varghese, G.: Faster IP
Lookups using Controlled Prefix Expansion,
Proc. ACM Sigmetrics 98, pp.1–10 (1998).

18) Lakshman, T.V. and Stiliadis, D.: High-Speed
Policy-based Packet Forwarding Using Efficient
Multi-dimensional Range Matching, Proc.SIG-
COMM 98, pp.203–214 (1998).

19) Srinivasan, V., Varghese, G., Suri, S. and
Waldvogel, M.: Fast and Scalable Layer Four
Switching, Proc. SIGCOMM 98, pp.191–202
(1998).

20) Gupta, P. and McKeown, N.: Packet classifi-
cation on multiple fields, Proc. SIGCOMM 99,
pp.147–160 (1999).

21) Takahashi, N.: Real-time packet classification
based on the partial evaluation of filter-sieve
functions (in Japanese), Proc. Workshop on
Internet Technologies 99, pp.190–197, JSSST
(1999).

(Received May 8, 2000)
(Accepted October 6, 2000)

Naohisa Takahashi was
born in 1951. He received
B.E. and M.E. degrees in electri-
cal engineering from the Univer-
sity of Electro-Communications,
Tokyo, Japan, in 1974 and 1976,
respectively. He received a doc-

torate in computer science in 1987 from Tokyo
Institute of Technology. Since 1976 he has been
a researcher in the NTT Electrical Communica-
tions Laboratories, where he has been engaged
in research on parallel processing, software engi-
neering and computer networks. He is currently
a leader of Parallel and Distributed Architec-
tures Research Group in NTT Network Innova-
tion Laboratories. Dr. Takahashi is a member
of IPSJ, IEICE, JSSST and ACM.


