
Vol. 42 No. 2 IPSJ Journal Feb. 2001

Regular Paper

Creating Web-based Presentations by Demonstration

Yoshinori Aoki,† Fumio Ando† and Amane Nakajima†,☆

This paper describes mechanisms for recording and playing back Web browser operations.
A recorder detects a user’s operations on a Web browser and saves them as an event sequence
called a scenario. A player plays back the scenario by controlling an actual Web browser. In
addition, the recorder and player allow a user to add explanations to existing HTML contents
by making “ink” annotations and attaching text, images, and hyperlinks to a Web page.
The recorder and player make it easy to create a Web-based automatic presentation scenario,
which can be played back later. The recorder and player run in a Java-enabled Web browser.
Users do not have to prepare the Web contents to be recorded themselves; they can work with
existing Web pages. This paper also describes example applications implemented on top of
the recorder and player.

1. Introduction

Web browsers are now among the most pop-
ular user interfaces in network computing envi-
ronments. They can be used not only to view
information on the Internet, but also as client
platforms for Web-based applications such as
online malls and electronic banking services.
We are developing a system with which we
can easily create automatic Web-based presen-
tations by demonstrations. Our system detects
a user’s operations on Web pages, and saves
them in a text file. The system replays the
recorded operations later, allowing users to cre-
ate a Web-based presentation by recording their
operations such as loading Web pages, scrolling,
and pointing at a certain part of a Web page.
With our system, users can provide an auto-
matic navigated tour of their Web sites, or show
examples of the operations needed to apply for
services at their sites.
This paper presents mechanisms for record-

ing and playing back Web browser operations.
A recorder detects a user’s operations such as
URL transition, form input, and mouse pointer
movement, and saves them as an event se-
quence called a scenario. A player plays back
recorded operations by controlling an actual
Web browser. Four major features of the
recorder and player are described below.

Event recording based on the Document Ob-
ject Model: A unique feature of our recording
mechanism is that it is based on the Docu-
ment Object Model (DOM) 23). It is simple,

† IBM Research, Tokyo Research Laboratory
☆ Presently with IBM Global Services - Japan

but very powerful. With the mechanism, the
recorder can not only detect a user’s operation
events, but can also obtain many kinds of data
related to the Web document. For example,
when a browser finishes loading a Web page, the
recorder not only detects a load event, but also
obtains the title of the page, the URL, the num-
ber of hyperlinks in the page, and so on. The
URL of the page is needed when the player re-
plays the load event. The title and the number
of hyperlinks are not needed for playback, but
are valuable for automatically creating meta-
data for the recorded presentation.

Working with existing HTML contents and a
normal Web browser: Since the recorder and
player can work with ordinary Web pages, they
can handle existing HTML contents. A Web
page designer need not consider any record-
ing and playback mechanisms. Users do not
need to install any special Web browsers on
their machines, because the recorder and player
can work with a normal Web browser, such as
Netscape Communicator or Microsoft Internet
Explorer, without any modifications.

Working in a Web Browser: The recorder
and player can be downloaded and used in a
Web browser, because they are developed in
Java and JavaScript. Thus, users do not have
to install any software except a Web browser.
To download the recorder and player applets to
a Web browser, all a user has to do is access
a Web page. It is especially important for end
users to be able to use the recorder easily, be-
cause many Internet users are end users.

Presentation capability: The recorder and
player allow a user to add explanations to ex-
isting HTML contents by making “ink” anno-

155

156 IPSJ Journal Feb. 2001

Fig. 1 Web operation recorder and player.

tations and attaching text, images, and hyper-
links to a Web page. These functions are useful
for making an impressive Web-based presenta-
tion.
Figure 1 shows a screen image of our im-

plementation. Window (c) shows the recorder
and player working in a browser window. Win-
dow (a) is a Contents Window in which a user
browses a Web page. Window (a) shows a Web
page with ink annotations, text, and an image.
Window (b) is a Sticker Window, from which a
user can take images to attach in window (c).
The rest of the paper is organized as follows.

The next section discusses our work and related
work. In the section after that, we describe the
recording and playback mechanisms. Then, in
the following section, we describe some sample
applications that we implemented. The last sec-
tion presents our conclusions and outlines our
plans for future work.

2. Related Work

Lotus ScreenCam and Microsoft Camcorder
are commercial products that provide image-
based screen recording and playback functions.
They capture the full screen and save it as a
movie, which is a sequence of captured images.
The volume of image-based recorded data is
much larger than that of event-based recorded
data 15): the data size of a one minute record-

ing is normally several megabytes. However, for
gathering many users’ data on the Internet, a
small data size is important. Another advan-
tage of event-based recording systems is flexi-
bility of playback. Through event-based play-
back, the player offers some effective ways of
playing back scenarios. For example, this func-
tion can be used to play a recorded scenario
at double speed or one-third speed. Through
selective playback, a user can select the types
of event to be played back; for example, it is
possible to play back all types of events except
mouse movement events. This function is very
useful, because it allows a user to control the
playback for a particular purpose.
Synchronized Multimedia Integration Lan-

guage (SMIL 1.0) 3),8),18) is a layout language
for describing a multimedia presentation con-
sisting of multiple elements of music, voice, im-
ages, text, video, and graphics in a common,
synchronized timeline. WebStage 25) creates an
automatic Web presentation to facilitate pas-
sive Web browsing by adding images, sounds,
and movies. In SMIL, it is possible to describe
the layout and timing for each text, image, au-
dio, video, or other object. However, SMIL au-
thoring tools are as complicated as conventional
multimedia authoring tools such as Macrome-
dia Director. In such tools, we have to specify
the behavior for each object in detail by us-

Vol. 42 No. 2 Creating Web-based Presentations by Demonstration 157

ing multiple time lines. In addition, it is not
possible to describe a user’s operations such as
window sizing, form input, and mouse pointer
movement.
Event-based recording has been studied in

the form of programming by demonstration
(PBD) systems 5),6),10),13),14),16),21),22). A PBD
system records a user’s operations and plays
them back. One feature of our system is
that the recording and playback mechanisms
are separated from the Web browser, whereas
many conventional PBD systems are specially
designed for recording and playback. This al-
lows our system to work with a normal Web
browser without any modifications. Previous
studies have given us ideas for applications that
could run on top of our mechanisms. Two
examples are Peridot 16) and SimUI 10), PBD
systems that help users create GUIs (graphi-
cal user interfaces). Metamouse 13) is a system
for simple drawing applications that watches
a user’s operations and writes a program that
generalizes those operations. It is similar to our
recorder in that the user must explicitly indi-
cate the start of a demonstration. Eager 5) and
DemoOffice 21) detect a user’s repetitive oper-
ations automatically, and generate a program
to execute the repetitive operations. Internet
Scrapbook 22) is an application that provides
a function for automating repetitive browsing
tasks, using PBD techniques. An interesting
function is that the system allows a user to cre-
ate a personal page by clipping only the nec-
essary portions from multiple Web pages. The
personal page is automatically updated by the
system.
Applications that have recording and play-

back functions can be developed by using spe-
cial toolkits 4),14),15). LEDA 14) is a program-
ming environment on top of the window system
of OS/2, and can be used to develop PBD ap-
plications. Applications developed with LEDA
can record a user’s operations on GUI com-
ponents, such as button clicking and window
resizing, but cannot detect application-specific
events such as page loading event and form sub-
mission. HABANERO 4) and Jedemo 15) are
toolkits for developing Java applications or ap-
plets that have recording and playback func-
tions. JAMM 2) is a Java runtime environment
that supports the shared use of existing Java
applets. These technologies are complementary
to our mechanisms, because our recorder does
not support recording and playback functions

for Java applets in Web pages.
Several Web-browser-sharing technologies us-

ing operation event detection mechanisms have
been developed in the last three years 7),9),11),19)

GroupWeb 7),17) is a special Web browser for
sharing Web pages with group members in real
time. In CoWeb 9), the server modifies HTML
documents by replacing HTML input elements
with Java applets that enable form input op-
erations to be detected. But it is an inflexible
method, because the event handlers of modi-
fied elements do not work correctly. Hooking
of the message queue is used to detect a user’s
operations with a normal Web browser in11),19).
But such an approach requires hooking modules
specific to each browser and each operating sys-
tem, to be developed and installed in each client
machine. It is not a general approach, and re-
quires a lot of work by the user.

3. Recording and Playback Mecha-
nisms

In this section, we describe our recording and
playback mechanisms. The recorder records
a user’s operations on a Web browser. The
recordable operations include URL transition,
scrolling, window sizing, window positioning,
form operation, and mouse pointer movement.
Recorded operations are saved as a scenario,
which is a sequence of operation events. A
scenario contains URLs that a user has vis-
ited, and operations at each of the URLs. The
player plays back a scenario by controlling the
actual Web browser. The recorder allows users
to make ink annotations and attach text, im-
ages, and hyperlinks on a Web page. Users can
create scenarios manually, but do not need to
do so when recording from real operations. Op-
erations on normal Web pages can be recorded.
3.1 Recording Mechanism
The recorder has to detect a user’s opera-

tion events in order to record them. Our ap-
proach is to modify HTML contents in the
proxy server in order to insert event genera-
tion methods. The modified HTML file de-
tects the user’s operation events and notifies
the recorder of them autonomously. Figure 2
shows the architecture of our system. First, a
user has to download the recorder page contain-
ing the recorder applet. The recorder applet
opens a new browser window called Contents
Window. The user browses and operates Web
pages with the Contents Window as in normal
Web browsing, downloading Web pages via a

158 IPSJ Journal Feb. 2001

Fig. 2 System architecture.

proxy server that contains the Embedding En-
gine. The Embedding Engine inserts event han-
dlers and JavaScript methods, which detect a
user’s operation, into the original HTML file
on the fly.
3.1.1 Methods for Inserting Event

Handlers
There are two alternative methods for setting

event handlers in an HTML file, as shown in
Table 1. One is to insert event handlers into
each HTML tag, as in the following line. We
call this the tag method.

The other is to set event handlers in JavaScript,
as in the following line. We call this the script
method.

document.images[0].onClick=notify;

When the author of the HTML file has already
set an event handler, both the original event
handler and our event handler have to be exe-
cuted. They do not conflict, because the func-
tion of our event handler is simply to notify
the recorder applet that the event has fired. In
the tag method, the Embedding Engine has to
insert our event handler to execute both the
original event handler, “org()”, and our event
handler, “notify()”, as in the following line:

Table 1 Comparison of methods for inserting event
handlers.

Tag method Script method
Conflict with
original scripts? No No
Robustness Weak Strong
Implementation
of the Embedding Complex Simple
Engine

Fig. 3 Modification of event handler.

In the script method, embedded JavaScript has
to
(1) get the original event handler as a func-

tion object,
(2) convert the function object into a string

object, as shown in Fig. 3 (a),
(3) insert our event handler into on original

event handler with string operations, as
shown in Fig. 3 (b), and

(4) convert the string object into a function

Vol. 42 No. 2 Creating Web-based Presentations by Demonstration 159

object, and set it as an event handler.
Some HTML files on the Internet do not

strictly conform to the HTML syntax. For ex-
ample, some HTML files do not have a body
tag, which all HTML files should contain. Some
authors do not worry about the details of the
HTML syntax, because it is possible to display
loosely written HTML files on popular Web
browsers. When an HTML file is loosely writ-
ten, the tag method sometimes does not work
correctly, because there are no tags to be in-
serted into our event handler, and thus some op-
eration events cannot be recorded. The script
method is robust against this problem, because
all HTML objects are accessible in JavaScript
if a Web browser has successfully parsed an
HTML file, even if the HTML file is loosely
written. In addition, implementation of the
Embedding Engine for the script method is sim-
pler than that for the tag method, because all
the Embedding Engine has to do for the script
method is insert a JavaScript file into the orig-
inal HTML file. In Microsoft Internet Explorer
4 or 5, the script method is applicable to all
HTML objects. In Netscape Communicator 4,
however, the script method is applicable only
to some HTML objects. Therefore the script
method and tag method have to be used to-
gether for Netscape Communicator.
3.1.2 Example of Modified HTML File
Figure 4 (A) shows an example of an embed-

ded HTML file for Netscape Communicator. In
the example, a load event and an unload event
are detected in the tag method, and a window-
resizing event is detected in the script method.
The plus signs (+) indicate that the body

tag has been modified by the Embedding En-
gine in the tag method. The method “org()”
is the event handler set by the author of the
HTML file, and the method “notify()” is the
event handler inserted by the Embedding En-
gine. Both methods, “notify()” and “org()”,
are called when the Contents Window com-
pletes the loading of the HTML file and all its
components such as image files and Java ap-
plets. Lines marked with ‘#’ have been inserted
by the Embedding Engine. If such lines are
present, a JavaScript file named “EventDetec-
tor.js” will be included in the HTML file when
it is browsed. Figure 4 (B) shows the content
of the inserted JavaScript file. Lines marked
with ‘-’ show the JavaScript method that is
called when a load or unload event occurs. The
method “notify()” notifies the recorder of the

Fig. 4 Example of a modified HTML file.

load and unload events, and the recorder saves
them in a scenario or sends them to other nodes.
The recorder has to record other data required
for playback: the time stamp, event type, and
URL. It can also record more data based on
the DOM 23), such as document title and the
last date on which the document was mod-
ified, as shown in Fig. 4 (B). These data are
valuable in analysis of users’ behavior on Web
pages. In the same way, the recorder can detect
and save other events such as text field input
and link clicking. The Embedding Engine in-
serts event handers into suitable tags to detect
the user’s operation events in the tag method.
Lines marked with ‘=’ contain JavaScript code
that detects window-sizing events in the script
method, and notifies the recorder of them. In
the same way, window positioning and mouse

160 IPSJ Journal Feb. 2001

movement events can be recorded.
Since even JavaScript does not have event

handers for scrolling in Netscape Com-
municator, the recorder periodically checks
the page offset values in order to detect
scrolling. JavaScript provides two properties,
window.pageXOffset and window.pageYOffset,
that show the page offsets on the Web browser.
The recorder detects scrolling by monitoring
changes in the property values.
Embedding rules are simple, but powerful

enough to record all the necessary browser op-
erations. The Embedding Engine has to in-
sert lines marked ‘#’ in Fig. 4 (A) and embed
event handlers, “notify(),” into the appropriate
HTML tags.
3.2 Playback Mechanism
We implemented the Web operation player

and Web operation recorder as a single Java
applet. The recorder applet in Fig. 2 can be
regarded as a player applet in this section.
3.2.1 PlaybackUsing JavaScriptMeth-

ods
The player parses a scenario and plays it back

by using JavaScript methods. For example, a
window-resizing event is played back by using
the method “window.resizeTo(x,y)” provided
in JavaScript. The entire recorded event can
be played back with an appropriate JavaScript
method. The JavaScript methods will be called
from the player applet.
3.2.2 Technical Issues in URL Transi-

tion Playback
There are three major issues in URL tran-

sition playback: (1) timing of URL loading,
(2) form submission handling, and (3) multiple
frame support.
In our recording mechanism, all the URL

transitions are recorded when all the compo-
nents of the page have been loaded. The load
event data include the URL. Therefore, the
player can play back the URL transitions with
the recorded load events. But the time stamp
of the load event specifies the time at which
the browser completed the loading of a Web
page, not the time at which it started loading
the page. The time stamp of the unload event
shows the time at which loading of the next
Web page started, because an unload event oc-
curs when the previous Web page disappears
from the browser. Therefore the player has to
find the next URL and start loading immedi-
ately after finding the unload event in a sce-
nario.

URL transitions are caused in several ways.
A user can load a new Web page by speci-
fying a URL directly to the browser, clicking
a hyperlink, or submitting a form. Even the
JavaScript program sometimes causes a URL
transition. The player has to be able to han-
dle all these kinds of URL transitions. It has
to carefully handle the loading of the Web page
generated by a CGI program after a form sub-
mission. There are two methods for form sub-
mission, GET and POST. Server-side programs
generate an HTML page from the values of a
submitted form. The player has to actually sub-
mit a form by using a JavaScript method when
it finds a submit event in a scenario, because
the player cannot get the Web page from only
the recorded URL when the POST method is
used for form submission. The player has to
skip the next load event, because the next Web
page has already been loaded by the playback
of the form submission.
When a user loads a multi-frame Web page,

load events occur from each frame. Fig-
ure 5 (a) shows an example of a multi-frame
Web page. Although the user can see only
three frames in the browser, there are actually
five frames, as shown in Fig. 5 (b). We call the
frame that contains all the other frames the root
frame. In Fig. 5, Frame 1 is the root frame.
When a user loads this page, load events occur
as shown in Fig. 5 (c). The load event of the
parent frame occurs after all the load events of
its child frames. Suppose the player plays back
this load event sequence in the recorded order,

Fig. 5 Playback of multi-frame page loading.

Vol. 42 No. 2 Creating Web-based Presentations by Demonstration 161

as shown in Fig. 5 (c). Errors are caused by the
playback of the first four load events, because
the target frame does not exist yet. For exam-
ple, Frame 2 does not exist until “root.html”
for Frame 1 is loaded, but the load event of
“root.html” is in the fifth line. In this case,
the player cannot play back the first four load
events. But the player does not know which
load events cannot be played. Therefore, in
this case, the recorder should record only the
load events of the root frame. However, if some
user’s operations cause loading of a new Web
page into Frame 4 or 5 after the loading event of
Frame 1 has occurred, the new loading event of
Frame 4 or 5 has to be recorded. In short, page
loading caused by parent page loading should
not be recorded, but other load events have to
be recorded. The embedded JavaScript has to
notify the recorder of the load event only when
the parent page has already been loaded.
3.3 Time Management
Figure 6 shows an example of a scenario

timetable. Figure 6 (a) shows the timetable for
recording, and Fig. 6 (b) shows that for play-
back. The loading time is the interval between
the issue of an HTTP request and the comple-
tion of the loading of all the contents, including
images and applets. It depends on many fac-
tors such as the server load, network traffic, and

Fig. 6 Time management.

client CPU power. Therefore the loading time
at recording (T1) may be different from that at
playback (T3); this implies that the player has
to watch the behavior of the browser to avoid
errors. For example, if the player tries to play
back the clicking of a radio button when the
Web page loading has not been completed, the
browser issues an error if the browser cannot
find the radio button object because it has not
been loaded yet. Therefore the player does not
duplicate the loading time (T1). After detec-
tion of the load completion event, the player
restarts playback of the scenario. In the play-
back case, each period of operations, except
the loading time, is played back on the basis
of the time stamps that are recorded for each
operation. Therefore the browsing time during
recording (T2) and that during playback (T4)
are the same as in normal playback.
3.4 Critical Operation Events
The player removes the current Web page

from a Web browser in order to load a new
Web page. After loading the Web page, it cre-
ates objects such as frames, text fields, and im-
ages. During the Web page loading, the browser
becomes unstable, because the objects of the
old page no longer exist and it is not certain
whether the objects of the new page have been
created yet. But a user may be able to see a
part of the Web page, even when all the ob-
jects of the new page have not yet been cre-
ated. If the user performs some operations on
the Web page when it has not been completely
loaded, the player may cause errors by play-
ing back such events when the page loading
has not been completed. To avoid such errors,
the player does not play back any operations
while the browser is loading a Web page. The
player has to change the playback timing of op-
erations recorded during the following periods.
In Fig. 6 (a), A and B are the operation events
recorded during the page loading. The player
replays them after the loading event, as shown
in Fig. 6 (b).
3.5 Effective Playback
The player plays back a scenario by sending

recorded events to the actual browser, not by
showing a movie. Hence, it can provide some
effective ways of playing back operations. The
following are examples.
3.5.1 Playback Speed Control
The player can change the speed of playback.

For example, a user can play a recorded sce-
nario at double speed or one-third speed. As

162 IPSJ Journal Feb. 2001

explained in the previous section, the player
cannot control the loading time, but it can con-
trol the browsing time. Therefore playback is
controlled by controlling the browsing time.
3.5.2 Selective Event Playback
The player allows selective playback. In Web

operations, many kinds of operation events are
independent from the program viewpoint. For
example, mouse movement, text input into a
field, and scrolling of a browser window do not
have specific relationships. Thus, the player
can skip some kinds of operation events. This
feature is useful for quick playback, because it
allows a user to select the types of event to
be played back; for example, it is possible to
play back only the URL transitions, using the
browser as an automatic Web navigation tool.
By playing only the URL transition events at
full speed, a user can put into the cache the
Web pages he or she wants to see later.
3.6 Presentation Tools
3.6.1 Mouse Pointer
The recorder records mouse movement events

detected by the embedded JavaScript. How-
ever, the player cannot control the system
mouse, owing to the design of Java’s security
model. Since the player is written in Java and
JavaScript, it plays back the mouse movement
events by moving the image of a mouse pointer.
3.6.2 Annotation over the Web Page
The recorder and player provide an “ink” an-

notation function that allows the user to anno-
tate Web pages. It is implemented by using the
functions of Dynamic HTML. Figure 7 shows
our implementation of the annotation function.
When mouse movement events are detected by
the embedded JavaScript, the recorder creates
small colored layers d1 and d2 at the points
where the mouse movement events were de-

Fig. 7 Implementation of the ink annotation
function.

tected on the Web page, as shown in Fig. 7 (a).
In this way, colored layers are created accord-
ing to the movement of the mouse pointer, and
are then shaped as shown in Fig. 7 (b). The
recorder also records the user’s annotations,
and the player plays them back.
3.6.3 Additional Objects on the Web

Page
The recorder and player allow a user to at-

tach his or her own additional objects such as
text, images, and hyperlinks to a Web page.
Vistabar 12) provides a function for attaching a
text for a Web page. In the system, users can
see attached text in a Vistabar window, while
our system displays additional objects in a Web
page. In our system, a user can locate an ad-
ditional object anywhere in a Web page by us-
ing the functions of Dynamic HTML 1). The
recorder creates a new layer and puts HTML
elements specified by a user onto that layer. A
user can attach all kinds of HTML elements
such as text, images, and hyperlinks, because
any HTML expressions can be put onto a layer.
Figure 1 (b) shows the user interface of our
prototype. A user selects an image from the
Sticker Window, shown in Fig. 1 (b), then spec-
ifies where the image is to be located on the
Web page by means of mouse operations.
3.7 Implementation
We have implemented the recorder and player

in Java and JavaScript for both Netscape Com-
municator 4 and Microsoft Internet Explorer
4 and 5. There are some differences between
the implementation for Netscape Communica-
tor and that for Microsoft Internet Explorer,
because the Dynamic HTML compatibility be-
tween the browsers is not perfect.

4. Applications

In this section, we give some examples of ap-
plications.
4.1 Automatic Presentation
Web-based automatic presentation is one of

the most promising applications for our sys-
tem. A user can see an automatic presenta-
tion by simply clicking on a hyperlink for the
presentation. When the user clicks the hyper-
link, the player is automatically downloaded to
the user’s Web browser and starts the presen-
tation. In this manner, Web sites can provide
Web-based presentations such as site navigation
or sample form input demonstrations for novice
users. Distance learning is another important
application for our system. Instructors can eas-

Vol. 42 No. 2 Creating Web-based Presentations by Demonstration 163

ily create their own scenarios by gathering use-
ful Web pages from the Internet 20).
4.2 Analysis of Users’ Behavior on the

Web
It is important for Web site managers to ana-

lyze the behavior of their Web sites’ users, since
this allows them to evaluate the contents of
their sites and the user interfaces of their Web-
based applications. Some site managers now
analyze the logs generated by Web servers. A
log contains time stamps, accessed URLs, the
types of Web browser used, and various other
information. Analysis of logs provides enough
information for surveying accesses to a Web
site, but not enough for analyzing users’ be-
havior in detail. The most effective way of un-
derstanding a user’s behavior is to watch that
user’s operations on a Web browser.
With our mechanisms, an analyst can record

users’ operations on Web pages and replay them
later. However, analysts have to be careful to
warn users when they gather private informa-
tion such as users’ operations on aWeb page 24).
4.3 Real-Time Web-Browser-Sharing

System as a Collaboration Tool
Real-time Web browser sharing 7),9),11),19)

is useful in computer-supported collaboration.
We realized Web browser sharing by connecting
the recorder and player. Figure 8 shows the
mechanism of our implementation. To synchro-
nize the Web browser at Node A with the one
at Node B, the recorder at Node A detects the
user’s operations and sends them to the com-
munication server. The communication server
sends them to the player at Node B, and the
player plays them back by using the Contents
Window at Node B. Java’s security model al-

Fig. 8 Implementation of a Web-browser-sharing
system based on the recorder and player.

lows Java applets to have a connection only
with the server machine from which the Java
applet has been downloaded. Thus, the com-
munication server must be located in the Web
server in which the recorder and player applets
are stored.

5. Conclusions and Future Work

This paper has presented an event-based
mechanism for recording and playing back
Web browser operations. The recorder records
a user’s operations on a Web browser and
plays them back by controlling the actual Web
browser. Recordable operations include win-
dow sizing, window positioning, scrolling, form
operation, and mouse pointer movement. In ad-
dition to ordinary Web operations, the recorder
and player allow a user to make “ink” annota-
tion and attach text, images, and hyperlinks on
a Web page so that he or she can add explana-
tions to the existing HTML contents. With this
mechanism, users can easily create Web-based
presentations by recording their operations. We
have implemented the recorder and player in
Java and JavaScript. Thus, end users do not
need to install any software in their systems,
except for a Web browser.
In evaluating the recorder and player with

HTML contents on the Internet, we identified
the following issues. Our proposed system can
cope with all of them except the first:
• The recorder and player cannot support

programs embedded in a Web page such as
Java applets, plug-ins, and ActiveX con-
trols. As we explained, there are sev-
eral useful methods for supporting Java ap-
plets 2),4),15).

• Some Web sites, such as news sites, fre-
quently update their contents. When a
Web page has been updated since it was
recorded, the player has to warn the user.
The same problem arises for Web pages
generated dynamically. One solution to
the problem is to save the HTML contents
along with the recorded data.

• Submission of a form usually involves a
transaction such as purchasing something
or applying for a service. When a user does
not want to generate a real transaction dur-
ing playback, the player has to avoid re-
playing the submission event.

Despite the issues mentioned above, our ex-
perience has convinced us that our event-based
recording mechanism based on the DOM is suit-

164 IPSJ Journal Feb. 2001

able for a Web browser. There are three reasons
for this: The first is that our mechanism is very
powerful, even though it is simple. The recorder
can not only detect all types of operations re-
quired for a playback, but can also obtain many
data related to a Web document on the basis of
the DOM. The second reason is the volume of
recorded data. Since it is much smaller than
that of image-based recorded data, the down-
loading (or uploading) time is very short. The
third reason is platform-independence. Our
method is independent of the operating sys-
tems and browser, because HTML and Java
are standardized. The recorder and player
are implemented in Java and JavaScript, and
can therefore work in many computing environ-
ments without requiring any client software to
be installed. The only requirement for a client
machine is a Java-enabled Web browser.
Our next step will be to create an editor for

modifying recorded scenarios. In our experi-
ence, we have found that it is often necessary
to modify a recorded scenario to improve the
presentation or create a new presentation from
existing ones.
Acknowledgments The authors would

like to thank Dr. Toshio Souya for his im-
plementation of the Embedding Engine, and
Younosuke Furui for his implementation of the
communication server. They would also like
to thank their colleagues in the laboratory for
their valuable comments.

References

1) Aoki, Y. and Nakajima, A.: User-Side Web
Page Customization, Proc. 8th Intl. Conf. on
Human-Computer Interaction, Vol.1, pp.580–
584 (1999).

2) Begole, J.B., Struble, C.A., Shaffer, C.A. and
Smith, R.B.: Transparent Sharing of Java Ap-
plets: A Replicated Approach, Proc. UIST ’97,
pp.55–64 (1997).

3) Bulterman, D.C.A., Hardman, L., Jansen J.,
Mullender, K.S. and Rutledge, L.: GRiNS: A
GRaphical INterface for Creating and Playing
SMIL Documents, Proc. 7th Intl. World Wide
Web Conf. (1998).
http://www7.scu.edu.au/programme/
fullpapers/1939/com1939.htm

4) Chabert, A., Grossman, E., Jackson, L.,
Pietrowicz, S. and Seguin, C.: Java Object-
Sharing in HABANERO: A New Framework
for Collaborative Tool Development Uses Any
Platform That Supports Java, Comm. ACM,
Vol.41, No.6, pp.69–76 (1998).

http://havefun.ncsa.uiuc.edu/habanero/
5) Cypher, A.: Eager: Programming Repetitive

Tasks by Example, Proc. CHI ’91, pp.33–39
(1991).

6) Cypher, A. (Ed.): Watch What I Do: Pro-
gramming by Demonstration, MIT Press, Cam-
bridge, MA (1993).

7) Greenberg, S. and Roseman, M.: GroupWeb:
A WWW Browser as Real Time Groupware,
Companion Proc. CHI ’96, pp.271–272 (1996).
http://www.acm.org/sigchi/chi96/
proceedings/shortpap/Greenberg4/sg3txt.htm

8) Hoschka, P. (Ed.): Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification,
W3C Recommendation (1998).
http://www.w3.org/TR/REC-smil/

9) Jacobs, S., Gebhardt, M., Kethers, S. and
Rzasa, W.: Filling HTML Forms Simultane-
ously: CoWeb – Architecture and Function-
ality, Proc. 5th Intl. World Wide Web Conf.
(1996).
http://www5conf.inria.fr/fich html/papers/
P43/Overview.html

10) Kishi, N.: SimUI: Graphical User Interface
Evaluation Using Playback, Proc. COMP-
SAC ’92 (Computer Software and Applications
Conf.), pp.121–127 (1992).

11) Kobayashi, M., Shinozaki, M., Sakairi, T.,
Touma, M., Daijavad, S. and Wolf, C.: Collab-
orative Customer Services Using Synchronous
Web Browser Sharing, Proc. CSCW ’98, pp.99–
108 (1998).

12) Marais, H. and Bharat, K.: Supporting Co-
operative and Personal Surfing with a Desktop
Assistant, Proc. UIST ’97, pp.129–138 (1997).

13) Maulsby, D. and Witten, I.: Inducing Pro-
grams in a Direct-Manipulation Environment,
Proc. CHI ’89, pp.57–62 (1989).

14) Mima, Y.: A Visual Programming Environ-
ment for Programming by Example Abstrac-
tion, Proc. 1991 IEEE Workshop on Visual
Languages, pp.132–137 (1991).

15) Miura, M. and Tanaka, J.: A Framework
for Event-Driven Demonstration Based on the
Java Toolkit, Proc. APCHI ’98 (Asia Pacific
Computer Human Interactions), pp.331–336
(1998).

16) Myers, B.: Creating User Interfaces Using
Programming-by-Example, Visual Program-
ming, and Constraints, ACM Trans. Program-
ming Languages and Systems, Vol.12, No.2,
pp.143–177 (1990).

17) Roseman, M. and Greenberg, S.: Build-
ing Real-Time Groupware with GroupKit, A
Groupware Toolkit, ACM Trans. Computer-
Human Interaction, Vol.3, No.1, pp.66–106
(1996).

Vol. 42 No. 2 Creating Web-based Presentations by Demonstration 165

18) Rousseau, F. and Duda, A.: Synchronized
Multimedia for the WWW, Proc. 7th Intl.
World Wide Web Conf. (1998).
http://www7.scu.edu.au/programme/
fullpapers/1833/com1833.htm

19) Sakairi, T., Shinozaki, M. and Kobayashi, M.:
CollaborationFramework: A Toolkit for Shar-
ing Existing Single-User Applications without
Modification, Proc. APCHI ’98 (Asia Pacific
Computer Human Interactions), pp.183–188
(1998).

20) Souya, T., Ohtani, C., Aoki, Y., Masuda, Y.
and Nakajima, A.: How to Show Web Pages
for Learners: Teaching and Learning with Web
Recorder, Proc. ED-MEDIA 2000, pp.1038–
1043 (2000).

21) Sugiura, A. and Koseki, Y.: Simplifying Macro
Definition in Programming by Demonstration,
Proc. UIST ’96, pp.173–182 (1996).

22) Sugiura, A. and Koseki, Y.: Internet Scrap-
book: Automating Web Browsing Tasks
by Demonstration, Proc. UIST ’98, pp.9–18
(1998).

23) W3C (World Wide Web Consortium), Docu-
ment Object Model.
http://www.w3.org/DOM/

24) W3C, Platform for Privacy Preferences P3P
Project. http://www.w3.org/P3P/.

25) Yamaguchi, T., Hosomi, I. and Miyashita, T.:
WebStage: An Active Media Enhanced World
Wide Web Browser, Proc. CHI ’97, pp.391–398
(1997).

(Received May 1, 2000)
(Accepted October 6, 2000)

Yoshinori Aoki received the
B.E. and M.E. degrees from
Kyushu University, Fukuoka,
Japan, in 1995 and 1997,
respectively. In 1997, he
joined Tokyo Research Labora-
tory, IBM Japan, Ltd. He has

worked on Web-based interactive system de-
signs in the laboratory. His research in-
terests include human-computer interaction,
XML, and distributed systems. He is a member
of the ACM.

Fumio Ando received the
B.E. and M.E. degrees in elec-
tronic engineering from the Uni-
versity of Tokyo in 1988 and
1990, respectively. He joined
IBM Japan in 1990. He has
worked in IBM Research, Tokyo

Research Laboratory for 10 years. Currently, he
is a manager of Technical Plans & Control. His
research interests include groupware, human-
computer interaction and distributed systems.

Amane Nakajima received
the B.E. degree in electronic en-
gineering in 1983 and the M.E.
degree in electrical engineering
in 1985 from the University of
Tokyo. He joined IBM Japan
in 1985. He worked in IBM

Research, Tokyo Research Laboratory for 15
years. Currently, he is a program manager
in IBM Global Services. His research inter-
ests include human interaction systems and dis-
tributed systems. He received the Best Paper
Award from the Institute of Electronics, Infor-
mation and Communication Engineers of Japan
in 1987. He is a feature editor of IEEE Com-
munications magazine. He is a member of the
IEEE and the Association for Computing Ma-
chinery.

