L E 2420 CER 3 FRilD 2 EA &

5—355

- The Roles of Formal Specification in the System Design Process

1S—2

1 Introduction

Incomplete and ambiguous problem requirements are inher-
ent to system design. Two. fundamental parts of the design
process are understanding and elaborating these requirements
[Gui90]. These activities are carried out continuously during
the design.process, but two of the more important mechanisms
used are simulations within the problem domain and construc-
tion of solutions. These are both effective because they generate
questions about the problem which helps the designer to dis-
cover the incompleteness, ambiguity, and perhaps contradictions
within the problem requirements.

However, there is another well known, but infrequently prac-
ticed, method to structure problems: we can write a formal spec-
ification of the problem.

This paper shows how formal specifications can be a use-
ful tool in the psychological investigation of the design process
and how existing psychological results can illustrate the roles of
formal specification and how they can be better integrated and
supported. We will illustrate this interaction by examining the
activities of writing and using formal specifications. The use of
formal methods to ensure correctness is not explicitly addressed.

2 Writing formal specifications

Writing a formal specification can be seen as an externali-
sation of the internal process of understanding. Understanding
partly involves the construction of an internal model which re-
flects the external problem. It is difficult to build such an internal
model because of certain cognitive characteristics:

e simple oversight of issues

e deliberate omission of issues due to poor prioritization
e use of (non-logical) induction in model construction

e cognitive overload leading to forgetting

The use of a constricted notation, e.g. a formal one, forces more
complete elaboration of these issues and the externalisation of
the method, on paper or with computer support tools, helps to
overcome the last problem.

This forces the question: at what level do we exercise the
problem in order to understand and elaborate it? The answer
is: at the highest level possible. Formal specifications, at the
highest level of abstraction, thus have an important role to play,
but many automated exercises are still technology limited, e.g.
specification execution, animation, theorem proving.

2.1 Selection of notation

The large range of formal (and informal) specification nota-
tions which exist clearly demonstrates that there is no single,
ideal notation, nor will there ever be. The process of choosing
a notation is characterised by the question: “in what terms do
we specify this problem?” This decision is of fundamental im-
portance because once the choice has been made, the problem is
then analysed in those terms: using the Z [Spi89] notation, we
look for sets, sequences and functions; when using CSP [Hoa85],
we look for processes and communication.

Apart from the obvious advantages of rigour, the use of for-
mal notations poses a problem in this way because they limit

Tim Gleeson and Toyofumi Takenaka

~ ATR Communication Systems Research Laboratories

the informal, and far more flexible internal creative analysis pro-
cesses. Nonetheless, the existence of formal notations at least
allows us to psychologically investigate how they are chosen,
something which would be very difficult to do with unstructured
internal processes.

Furthermore, the investigation of how notations are selected
against problem structures may reveal evidence about how pre-
vious experience is drawn upon in later stages of design [Gui90].

2.2 Elaborating requirements

When developing programs we should not only record the
intermediate steps but also the decisions, justifications and re-
jected alternatives involved. Such decisions are an essential part
of the design process. Recording them also increases the poten-
tial for the reuse of the constructed items and aids maintenance
which requires this information for decision reassessment. Simi-
larly, in the step between informal requirements and the top level
formal specification, we should record the reasons for the deci-
sions we have made which seem to be fundamentally different
in character from those refinements made between later formal
domains. For example:

e Making implicit requirements explicit

Adding assumptions
o Resolving ambiguities
e Removing inconsistencies

All of these activities can be aided by the construction of a formal
specification, particularly if the formal notation has a calculus
of properties, as illustrated by the work of Hoare et al. [H*87].
It is the existence of such a calculus that not only allows us
to ask questions about the problem (and get objective answers)
which increases our understanding, but can also suggest those
questions. :

Refinement during solution production is generally from one
formal domain (a higher-level specification or program fragment)
to another (a lower-level specification or program fragment).
However, writing a formal specification can be seen as an in-
formal refinement from several domains, including:

e the problem statement
e problem domain knowledge (e.g. lifts)
e real world knowledge (e.g. flow of time)

e computing knowledge (e.g. pragmatics and computability
theory)

3 Using formal specifications

We stated that two major goals in systems design were under-
standing and elaborating requirements. If we construct a system
from a formal specification, then we only have the understanding
left to do: the formal specification should completely elaborate
the system requirements.

The designer still needs to understand the formal specifica-
tion, even though it may be complete and unambiguous. The
internal model that the designer constructs will itself be incom-
plete and ambiguous. Thus we need a psychological study of the



5—356

relationship between internal and extérnal models and how they
interact. This will be far more tractable when the external model
is formal, complete and unambiguous rather than informal.

One way in which the internal and external models interact
is by the process of testing, or comparison, where the internal
model is exercised against the external one. When writing formal
specifications, a calculus of properties within the specification
was one of the advantages of formal specifications mentioned.
In the case of using formal specifications, this can be done with
both a calculus of properties and a calculus of refinement. The
designer can use the internal model to suggest refinement steps,
but will always be able to check these against the external model
when the formal steps must be made. This is a self correcting
system: the external, formal refinement step is necessarily cor-
rect, but it leads to the correction of internal model errors. Thus
we get the best of both worlds: external formality and rigour and
internal non-logical, creative reasoning which is corrected. We
must build systems which promote this synergy.

4 The importance of formality

Why is formality important?

A formal specification notation should be a relatively sim-
ple thing, with a limited number of concepts, yet it should be
able to express everything in its domain of applicability. This
makes writing specifications easier: the pattern matching pro-
cess between problem element and suitable specification element
is simpler. This also makes refining specifications into solutions
easier: e.g., take the subset of a set, decompose a function. This
kind of calculus of refinement is well illustrated by Gries [Gri80].

Another benefit of formality is the constructive externalisa-
tion of information. Externalisation is important because it re-
lieves many of the cognitive problems involved in design. Many
non-formal methods also encourage externalisation, but formal
methods are particularly constructive in that they have objective
criteria for what must be externalised. In addition, of course, the
externalisation allows for the use of the formal calculi we have
already mentioned.

However, a limited domain notation, is not a sufficient con-
dition of utility. If we look at a Pascal program we can regard
it as a string of characters: this is a very simple notation but
entirely unhelpful. We can look at it as a string of tokens, which
is more helpful, or better still as an abstract parse tree. Though
the more abstract notation of formal methods, such as sets and
functions from the Z [Spi89] notation may capture the essence of
what is required better than implementation structures, such as
arrays and jumps, it is by no means clear that they are univer-
sally ideal.

5 Difficulties of formal specifications

One of the claimed benefits of formal specifications is that
they force the specifier to be open and explicit, forcing a complete
binding contract between client and implementer. This can also
be problematic because they may force problem choices that the
intended client doesn’t yet want to make. The client may want
to hide certain aspects in decent privacy. Formal methods should
allow for well defined areas of doubt and uncertainty and still be
usable.

This raises social questions of why we write programs: some-
times we write them to understand the world, rather than be-
cause we have a specific goal in mind. This may make it very
difficult to write a formal specification before we construct a sys-
tem, an article of formal methods dogma.

For example, we may implement a new programming lan-
guage system because we want to investigate how useful from a
human viewpoint that language is — irrespective of whether we
have a formal semantics for it. This should come as little surprise

to us: there js a world of difference between proving properties
about a system (or designing them into a system) and discover-
ing properties about it, whether the system is number theory, a
programming language or a spreadsheet application.

Further, even if we knew what we wanted, not all properties
can be stated formally. Formal methods are still very weak in
many areas, particularly those concerning performance, real-time
issues and concurrency.

Formal. specifications, though perhaps mathematically and
legally complete may be grossly overdetailed from certain psy-
chological viewpoints. “Superabstractions” which omit much of
the detail of a system may be useful. The purpose of superab-
stractions is not to be accurate or complete but to help the user
construct and use mental models of the system. The psycho-
logical study of “advance organisers” should help us to better
structure our specifications and to produce more useful superab-
stractions.

6 Conclusions

From the psychological viewpoint of the study of the design
process, the writing of formal specifications provides a valuable
tool because it enables us to largely separate the activities of
problem elaboration from problem understanding. We can sepa-
rately investigate how people generate formal specifications and
how they use them to produce solutions. Important questions
we should ask are what forms of knowledge or expertise are used
in these two stages.

From the practical viewpoint of building design support tools
we can use psychological results to help us to better integrate
formal methods into the design process, for example, to aid in
the selection of appropriate notation and to remove much of the
symbolic tedium of formal systems.

Current design tools, such as gIBIS [CB88], allow designers
to record their ideas and understanding of a problem, and how
these are elaborated and altered as the design progresses. Such
tools can also be used to help design solutions, but the problem
elaboration issues may be mixed up with solution design issues.
We should attempt to separate the two because they are very
different activities and need different kinds of support. We need
separate but integrated tools to aid us in the different roles we
have identified for formal specifications: elaboration and under-
standing of requirements through writing formal specifications
and using them in developing solutions. We need mechanised
support for both property and refinement calculi, both of which
can be used to improve the designer’s mental model.

References

[CB88] Jeff Conklin and Michael L. Begeman. gIBIS: A hyper-
text tool for exploratory policy discussion. Transactions
on Office Information Systems, 6(4):303-331, October
1988.

[Gri80] David Gries. The Science of Programming. Springer-
Verlag, 1980.

[Gui90] Raymonde Guindon. Knowledge exploited by experf.s
during software system design. International Journal of
Man Machine Studies, 33(3):279-304, September 1990.

[H+87] C. A. R. Hoare et al. Laws of programming. Commu-

nications of the ACM, 30(8):672-686, 1987.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[Spi89] J. M. Spivey. The Z Notation: A Reference Manual.

Prentice-Hall, 1989.



