S22 842 CERR 3 R 2B X2

5—161

TM—6

LU Decomposition with Arrays in Miranda

Martin Santavy - BLE <v—F 4 v
JUNARZE T 2ETPER T ER

Introduction

We describe a small set of simple, yet powerful operations that
allow us to manipulate large segments of data. The operations
are designed to utilize the power of parallel environments. At
the same time, they are flexible enough to be useful theoretical
tools that can be part of the design of parallel algorithms and
reasoning about them.

In parallel environments, loops with indices and references to in-
dividual data items have to be “parallelized”, which can often be
a difficult, if not unsolvable, problem. In our approach, we want
to avoid it altogether by manipulating arrays in their entirety
instead of accessing their individual elements one by one.

Also, instead of trying to modify the structure of a programming
language to allow the programmer to execute parts of her pro-
gram in parallel, we parallelize the data and leave the language
to manipulate them sequential. The efficiency of the programs
will lie in the efficiency of the basic tools, “primitives”, that the
programmer uses to manipulate the data. These tools must be
designed in a way that permits an efficient implementation in
most parallel environments.

Miranda is a polymorphic, strongly-typed, functional language
with lazy evaluation, abstract data types, and currying. We use
its power to combine our primitives in a simple and elegant way.
In the design of the primitives themselves, however, we settle
for only a theoretical consideration of their possible parallel im-
plementations and implement them in Miranda in an inefficient,
sequential, but demonstrative way.

Definition

An array is a multidimensional, rectangular structure that can be
fully described by its shape and values. To describe the shape, we
use a finite vector of natural numbers. The numbers indicate the
size of the array along the corresponding dimensions; the length
of the shape vector is the dimensionality of the array. The values
of the array form a vector of length equal to the product of the
shape. All values are of the same type.

Alternatively, an array can be viewed as a rectangular grid with
a unique value associated with each gridpoint or as a list of lists,
with each sublist representing a subarray of the array.

Representation

When a shared-memory machine is used, the array can be stored
in a continuous block of memory in the row-major order. Pro-
cessors can then independently manipulate different parts of the
array. When a machine with no shared memory is used, the array
must be distributed among local memories of individual proces-

LU Decomposition with Arrays in Miranda
Martin Santavy

Department of Computer Science

and Communication Engineering

Kyushu University

sors. This can be done either by using the combination of the
processor address and the local offset to store the array in the
row-major order or by using some communication scheme among
processors, e.g. a tree or a mesh.

In Miranda, we use an array constructor, A, to construct a pair
of a shape vector and a value vector, both of type [num]. The
type of the array is then called reparray. Its synonym, array,
is used as a name of the abstract data type that includes the
array representation, reparray, and a set of basic function to
manipulate it, first, rest, cat, isempty, etc.:
reparray ::= A [num] [num]
array == reparray
absttype array
with

first, rest :: array->array

cat :: array->array->array
isempty : array->bool

A new array can be created using function arr ss vs, which
returns an array of shape ss with values taken from vector vs.
If necessary, vector vs is repeated.

Basic Operations-Primitives

The basic set of operations must include functions that give infor-
mation about the structure of the array. Examples of structural-
information functions are the function shp x that returns a list
of values representing the shape of the vector x and the function
issingle x that returns the boolean value True if and only if
the array x, when viewed as a list of subarrays, has only one
element.)

shp (A ss vs) = ss

issingle (A (s:ss) vs) = s=1

Functions first, rest, cat return the first subarray of an array,
everything but the first subarray of an array, and a catenation of
two arrays along the 0-th dimension, respectively. The functions
follow a simple set of rules. An example of a such a rule is

cat (first x) (rest x) == x
which holds for for any x.

Functions tk and dp treat arrays as lists of lists a.nd‘ behave
similarly to Miranda’s functions take and drop. In addition to
these two functions, we define function bk that returns a specified
number of subarrays, starting from a specified position. Since
arrays are multidimensional, the functions accept a list of values
indicating the number of elements to be taken or dropped in each

dimension.
tk a == bk a []
dp a == bk [] a

Using these primitives, we can construct other functions, e.g.
a function cnst ¢ x that returns the array x with all values
replaced by c:

cast n x = arr (shp x) (repeat mn)

5—152

Higher-Order Operations

A higher-order operation accepts functions as its arguments and
produces a function as its result.

The higher-order operation mul £ x applies function f to every
subarray of array x, which is viewed as a list of its subarrays.
Operator mul is defined as:

mul f x

= arr (0:shp (f (first x))) [], hd (shp x)=0

= cat (f (first x))(mum1l f (rest x)),otherwise

The operator mu1’ is a simple generalization of mul. It accepts
an additional numerical parameter that determines along which
dimension the function-argument should be applied.

m1’(n+1) £ = mil (m1’ n f)

mil’ O f =1

The higher-order operations op1 and op2 extend common unary
and binary operations to arrays. When the sizes of the arrays
do not match, op2 tries to replicate the “smaller” argument to
match the size of the other argument.

opl £ (A ss vs)
= A ss (map f vs)

p2 £ (4 s1 v1) (A s2 v2)

A s1 (map2 £ v1 v2), si=s2

mul (op2 £ (A s1 v1)) (A s2 v2), #s1<®s2
mu1 (op2 g (A 52 v2)) (A s1 vl), #s1>#s2
where g ab=1fb a

o

The higher-order operation upd a b £ (update) restricts the
function £ to the part selected by bk a b, while leaving the rest
of the array intact.

The it (iterate) operator applies a given function recursively on
smaller and smaller parts of a given array. It is not a primitive.
it 881 882 f x

x, isempty x
upd ssl ss2 (it ss1 ss2 f) (f x), otherwise

Example: LU Decomposition Algorithm

Let us consider the following Pascal routine to decompose matrix
A into a product L#U of a lower-diagonal matrix L and an upper-
diagonal matrix U. The diagonal of L is formed of ones. At the
end of the routine, the lower-diagonal part of matrix & is replaced
by the lower-diagonal part of matrix L (excluding the diagonal)
and the upper-diagonal part of matrix A is replaced by the upper-
diagonal part of matrix U (including the diagonal).
procedure LU {n:integer; var A:matrix)
var i,;,k:integer;
begin for k=0 to n-1 do

begin for i:=k+1 to n-1 do {step 1}

ali,x]:=ali,kl/alk,k];
for i:=k+1 to n-1 do {step 2}
for j:=k+1 to n-1 do
ali,jl:=ali,jl-ali,xI*alk,j];

end
end;
It is not difficult to verify that this algorithm indeed finds an
LU decomposition of a given matrix. Let us simply ignore the
problem of division by zero when a[kk]=0 here.

Tho loops, however, do not describe the real idea of the algo-
rithm. The real idea is that we subsequently take smaller and
smaller submatrices of matrix A, and for each submatrix we ap-
ply two steps. Firstly, we divide its first column (except for the
upper-left-corner element) by the upper-left-corner element. Sec-
ondly, we subtract the outer product of this column with the first
row (without the upper-left-corner element) from the lower right

principal minor of the submatrix (i.e. what is left after removing
the first row and column).

In our system, the upper-left-corner element of matrix x is
accessed as first(first x), while its first column (without
the first element) is bk [n-1,1] [1,0] x where n=hd(shp x).
Therefore, step 1 can be written as:
stepl x
= nupd [n-1,1] [1,1]($divd (first(first x)))x

where n = hd(shp x)
Operation divd is an array extension of the regular divide oper-
ation.

The outer-product, needed in step 2, is very easy to define when
the operator mul’ is used.

op x y = mul’ k (mmlt x) y where k=dim y

where mult is defined, predictably, as op2(*). The first column
and the first row (both without their first element) of a matrix x
can be accessed by mul first(rest x)) and rest(first x),
respectively. The lower right principal minor is simply dp [1,1],
or bk [[1,1]. Therefore, step 2 of the algorithm can be writ-
ten as

step2 x
= upd [1 [1,1] ($sud
(op(mu1l first(rest x)) (rest(first x)))) x

The consecutive applications of steps 1 and 2 are simply

lu = it [] {1,1] (step2.stepl)
Conclusion

The Pascal routine in the example contains a triply-nested loop.
Our Miranda equivalent contains none. We see two main positive
sides of our approach:

o when the primitives are implemented in parallel, the whole
algorithm is inherently parallel, and

o when the algorithm is free of unnecessary loops and indices,
it is much easier to see its basic ideas and reason about it.

Acknowledgements

I thank Lenore Mullin and Nathan Freedman for their support
and encouragement.

References

{1] J. Backus, Can Programming be liberated from the von Neu-
mann style: A functional style and its algebra of programs,
Communications of the ACM 22, no.8, pp. 613-641, Aug.
1978.

[2] J. Bird, P. Wadler, Introduction to Functional Program-
ming, Prentice Hall, 1988

[3] L.M.R. Mullin, A Mathematics of Arrays,
Syracuse University, 1988.

[4] L.M.R. Mullin, G. Gao, M. Santavy, & B. Tiffou, Formal
Program Derivation for a Shared-Memory Architecture: LU-
Decomposition, McGill Univ., TR in progress, May 1990.

[5] M.Santavy, Arrays in Miranda, IEICE Technical Report,
vol.90, no.101, pp. 19-26, Dec. 1990.

[6] D.A. Turner, Miranda: a non-strict functional Janguage with

Ph.D. thesis,

polymorphic types, in J.-P. Jouannaud, editor, Functional
Programming Languages and Computer Architecture,
Springer-Verlag, 1985.

[7] D.A. Turner, An overview of Miranda, SIGPLAN Notices,
December 1986.

