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Evolutionary Synthesis of Bit-serial Arithmetic Circuits

Toshiki Terasaki,† Takafumi Aoki† and Tatsuo Higuchi†

The authors have proposed a new graph-based evolutionary optimization technique, called
“Evolutionary Graph Generation (EGG)”, for synthesizing circuit structures. This paper
presents an application of EGG to the design of bit-serial data-parallel arithmetic circuits
which frequently appear in real-time DSP architectures. The potential of the proposed ap-
proach is examined through the synthesis of bit-serial data-parallel adders with multiple
operand inputs. A new version of EGG system employs a symbolic verification technique
for fast functional evaluation of circuit structures, and can evolve the optimal 8-operand
bit-serial adder within a single evolutionary run of 1.5 hours.

1. Introduction

Arithmetic circuits are of major importance
in today’s computing and signal processing sys-
tems. Most of the arithmetic circuits are de-
signed by experienced designers who have spe-
cific knowledge of the basic arithmetic algo-
rithms. Even the state-of-the-art logic synthe-
sis tools can provide only limited capability to
create structural details of arithmetic circuits.

Addressing this problem, we have proposed
an approach to designing arithmetic circuits
using a new evolutionary optimization tech-
nique called Evolutionary Graph Generation
(EGG) 1). The key idea of the proposed EGG
system is to employ general graph structures
as individuals and introduce new evolutionary
operations to manipulate graph structures di-
rectly without encoding them into other indi-
rect representations, such as bit strings (used in
GA 2)) and trees (used in GP 3)). The potential
of EGG has already been investigated through
the design of combinational arithmetic circuits,
such as parallel multipliers 1),4). A natural (but
essential) question may arise here: Is it pos-
sible to apply the concept of EGG to a wider
class of arithmetic circuits whose specifications
include not only combinational operations but
also sequential operations? This paper is the
first attempt to address this question.

In order to apply the EGG system to sequen-
tial design specifications of practical size, we
must solve a major problem of evolutionary ap-
proach related to its computation time. The
run time of EGG is mainly dominated by the
functional evaluation of evolved structures in
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every generation. Basically, the complete func-
tional verification of an arithmetic circuit with
n input bits for t time steps requires O(2nt)
logical simulation cycles. This paper presents a
new possibility of reducing this computational
complexity by introducing a symbolic verifica-
tion technique. We propose a method of check-
ing the function of the given arithmetic cir-
cuit quickly by solving a set of mathematical
equations. This approach significantly reduces
the time of functional verification for sequen-
tial arithmetic circuits. In this paper, we fo-
cus on the problem of creating multi-operand
bit-serial adders as an example. The new ver-
sion of EGG system can generate the optimal
8-operand bit-serial adder within a single evo-
lutionary run of 1.5 hours. The proposed ap-
proach can also be applied to various sequential
design specifications including multiply-adders
as demonstrated at the last part of this paper.

The main contributions of this paper are:
(i) to demonstrate that the EGG system can

be applied to the synthesis of bit-serial
(sequential) arithmetic circuits, and

(ii) to introduce a fast functional verifica-
tion technique using symbolic computa-
tion for bit-serial arithmetic circuits.

2. Basic Concept of EGG and Its Im-
plementation

The Evolutionary Graph Generation (EGG)
technique can be regarded as a unique varia-
tion of evolutionary computation techniques 5).
In general, evolutionary methods mimic the
process of natural evolution, the driving pro-
cess for emergence of complex structures well-
adapted to the given environment. The better
an individual performs under the conditions the
greater is the chance for the individual to live
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Fig. 1 Example of a circuit graph.

for a longer while and generate offspring. As a
result, the individuals are transformed to the
suitable forms on the designer’s defined con-
straint. In the EGG system, a graph repre-
senting a specific circuit structure is modeled
as an individual, and a population of individ-
ual graphs is evolved by evolutionary opera-
tions. The EGG system is designed to manip-
ulate the graph structures directly without en-
coding them into other indirect representations,
such as bit strings and trees, used in GA and
GP.

The EGG system employs circuit graphs
(Fig. 1) to represent circuit structures. A cir-
cuit graph G is defined by

G = (N(G), D(G)), (1)
where N(G) is the set of nodes and D(G) is the
set of directed edges. Nodes are of two classes:
functional nodes and input/output nodes. Ev-
ery node has its own name, the function type
and input/output terminals. We assume that
every directed edge must connect one output
terminal (of a node) and one input terminal (of
another node), and that each terminal has one
edge connection at most. A circuit graph is
said to be complete if every terminal has an
edge connection. In order to guarantee valid
circuit structures, all the circuit graphs used in
the EGG system are complete circuit graphs.

Figure 2 shows the overall procedure of the
EGG system. At first, the system generates em-
bryonic circuit graphs randomly as follows: (i)
Select a set of functional nodes S randomly; (ii)
Calculate the difference I −O, where I denotes
the total number of input terminals of the se-
lected nodes, and O denotes the total number of
output terminals; (iii) Add some nodes to S so
as to satisfy I −O = 0; (iv) Connect the input
terminals and the output terminals randomly to
obtain a complete graph consisting of the nodes
S. (This process is also employed for muta-
tion operation illustrated later.) After the evo-
lutionary run, every circuit graph in the pop-
ulation is evaluated by symbolic computation

Generate embryonic circuit graphs

Evaluate circuit graphs by
symbolic verification

Determine circuit graphs for the
next generation

Select parent circuit graphs

Perform evolutionary operations
to generate offsprings

End
Is the number of

generations maximum?

YES

NO

Fig. 2 EGG system flow.

technique, which will be described in Section 3.
Then, the circuit graphs having higher scores
are selected to perform variation operations,
and the system generates offsprings for the next
generation. The EGG system has two variation
operations, crossover and mutation, to gener-
ate offsprings from the parents. The crossover
operation recombines two parent graphs into
two new graphs by exchanging their compati-
ble subgraphs as illustrated in Fig. 3 (a). The
mutation operation, on the other hand, par-
tially reconstructs the given circuit graph by
replacing its subgraph with a randomly gen-
erated subgraph which is compatible with the
original subgraph as illustrated in Fig. 3 (b).
Both operations transform the structure of cir-
cuit graphs, but they preserve the completeness
property, that is, if the parents are complete
circuit graphs, the generated circuit graphs are
also complete. Note that the evolutionary op-
erators shown in Fig. 3 could generate all the
possible complete graphs in principle, since the
mutation operation involves the process of cre-
ating arbitrary (complete) circuit graphs ran-
domly. However, system’s efficiency in reach-
ing the solution in the search space depends on
the actual implementation of the total system
flow (Fig. 2). This efficiency must be confirmed
through experiments.

The conventional EGG system, specialized
for generating combinational arithmetic cir-
cuits, could not be directly applied to other
design problems. Addressing this problem, we
developed a new version of EGG system on the
basis of an object-oriented programming ap-
proach. In this system, the framework classes,
which contain fundamental components for evo-
lutionary graph generation, and the application
class, which contains application-dependent
components, are separated, and hence the sys-
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Fig. 3 Examples of evolutionary operations: (a) crossover, (b) mutation.
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tem can be systematically modified for different
design problems. We implemented the EGG
system based on the class relationship diagram
shown in Fig. 4. The EGG system consists of
framework (or invariable) classes and an appli-
cation (or variable) class. The Egg class con-
trols the overall work-flow and has an aggre-
gation relationship with the Population class,
which contains the basic individual model de-
fined by the Graph class. The Graph also
aggregates the Node, Subgraph and Fitness
classes, where the Node contains the Terminal
class. The Operator class holds miscellaneous
operations for handling circuit graphs. The
Evaluation class, which gives “fitness” value
to every individual, provides the interface to
various applications. By inheriting framework
classes, the EGG system can be modified for a

wide variety of design problems. The SubEval
class inherits attributes from the Evaluation
class, and defines the application-dependent ob-
jects. We applied the EGG system to bit-serial
arithmetic design by describing the function
of inherited SubEval class without considering
other classes, which is one of the advantages of
the object-oriented approach.

3. Synthesis of Multi-Operand Bit-
serial Adders

We demonstrate the capability of the new
EGG system through an experiment of generat-
ing multi-operand bit-serial adders. Note that
the proposed method can be applied to other
design specifications easily by changing the tar-
get function. Table 1 shows four functional
nodes used in this experiment. We have se-
lected a set of functional nodes that makes pos-
sible the construction of various bit-serial data-
parallel adders, constant-coefficient multipliers,
constant-coefficient multiply-adders, which are
frequently appeared in signal processing appli-
cations. The circuit graphs generated by the
EGG system are evaluated by a combination
of two different fitness functions, functionality
and performance. The functionality measure F
evaluates the validity of logical function com-
pared with the target function. The perfor-
mance measure P , on the other hand, is as-
sumed to be the product of circuit delay D and
the number of inter-module interconnections A.

First, we describe the functionality measure
F in detail. In our original work 1), every cir-
cuit graph is translated into the corresponding
Verilog-HDL code, which is simulated to evalu-
ate its logical behavior. Basically, the complete
functional verification of a sequential arithmetic
circuit with n input bits for t time steps requires
O(2nt) logical simulation cycles. This time is
also multiplied by the population size and the
number of generations. This is a major draw-



978 IPSJ Journal Apr. 2001

Table 1 Functional nodes used in the experiment.

SymbolName
Mathematical representation

Delay

FA
1X

S

C
2X

3X
Full adder

2C + S = X1 + X2 + X3

2τ

HA
S

C1X

2XHalf adder

2C + S = X1 + X2

τ

RX Y
1-bit register

Y = 2X

Br 1Y

2Y
XBranch

Y1 = X, Y2 = X

0

back of EGG in its application to practical de-
sign problems. The new version of EGG solves
this problem by using a symbolic verification
technique. We propose a method of checking
the function of arithmetic circuits quickly by
solving a set of mathematical equations. This
method reduces the time for functional verifica-
tion to O(m2), where m denotes the number of
nodes within the circuit. In practice, the typical
time for verifying the function of an evolved cir-
cuit is given as 0.0561 seconds (n = 8, m = 28),
0.0572 seconds (n = 8, m = 29), 0.0602 sec-
onds (n = 8, m = 30), 0.0647 seconds (n = 8,
m = 31), and 0.0685 seconds (n = 8, m = 32),
while the Verilog-HDL simulation takes 50.2
seconds (n = 8, m = 32). Thus, the verification
technique itself can be employed for larger cir-
cuits. However, the EGG system restricts the
number of nodes up to 30 in order to keep the
time of total evolution process within a reason-
able range.

In the following, we describe the verification
technique in detail. This technique can be ap-
plied only to arithmetic circuits consisting of
components whose functions are represented by
addition and multiplication operations. Fur-
ther investigations will be required to develop
a technique applicable to a larger class of arith-
metic circuits. We assume the use of LSB-
first bit-serial arithmetic based on unsigned bi-
nary number system, where the first bit has
the weight 20, the second has 21, the third has
22, and so on. Hence, all the bit-serial signals
carry non-negative integers. Consider the sym-
bolic verification of a bit-serial arithmetic cir-
cuit shown in Fig. 5. Using the mathematical

FA
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Fig. 5 Example of a 2-input bit-serial arithmetic
circuit.

representation of node functions shown in Ta-
ble 1, we can describe the circuit function as a
set of simultaneous equations:

W1 = X1,
W2 = X1,
W3 = 2W1,

2W5 + W6 = X2 + W3 + W4,
2W4 + W7 = X2 + W9,

W9 = 2W8,
2Y + W8 = W5 + W6 + W7,

where the variables appeared in the above equa-
tions are non-negative integer variables repre-
sented by corresponding bit-serial signals shown
in Fig. 5. The input/output relationship of the
circuit can be derived by solving these equa-
tions. Using Gauss elimination, we have

2Y = 3X1 + X2 −W4 −W5 + W8.

As shown in this example, the function of an n-
input 1-output bit-serial arithmetic circuit con-
sisting of the nodes shown in Table 1 can be
represented in general as

K̂0Y =
n∑

i=1

K̂iXi + f(X1, · · · , Xn), (2)

where Xi (i = 1, · · · , n) represent bit-serial in-
puts, Y represents the bit-serial output, K̂i (i =
0, · · · , n) are non-negative integer coefficients,
and f(X1, · · · , Xn) is a nonlinear function of
input operands. The term f involves interme-
diate variables Wj (j = 1, 2, · · ·) which can not
be eliminated through Gauss elimination.

In this paper, we assume that the target func-
tion is given by

K0Y =
n∑

i=1

KiXi, (3)

where Ki (i = 0, · · · , n) are non-negative in-
teger coefficients. Note here that we must set
the target coefficients as K0 = K1 = · · · =
Kn = 1, when we synthesize an n-operand
bit-serial adder. The functionality measure F
for the evolved graph is calculated by evaluat-
ing the similarity between the coefficients K̂i

(in Eq. (2)) and the target coefficients Ki for
i = 0, 1, · · · , n. To do this, we first expand the
coefficients into binary strings as
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K̂i = k̂i,020 + k̂i,121 + · · ·
+ k̂

i, ˆ||Ki||−1
2

ˆ||Ki||−1,

Ki = ki,020 + ki,121 + · · ·
+ ki,||Ki||−12||Ki||−1,

where ||K|| = �log2(K + 1)�. The similarity
between these coefficients is evaluated by com-
puting their cross-correlation. The correlation
MK̂i,Ki

(s) of the two coefficient strings with the
shift amount s is defined by

MK̂i,Ki
(s) =



1
ˆ||Ki||

ˆ||Ki||−1∑
l=0

δ
(
k̂i,l − ki,l−s

)

if ˆ||Ki|| ≥ ||Ki||,
1

||Ki||
||Ki||−1∑

l=0

δ
(
k̂i,l−s − ki,l

)

if ˆ||Ki|| < ||Ki||,

(4)

where δ(x) is defined as δ(x) = 1 if x = 0 and
δ(x) = 0 if x �= 0. In the above calculation, we
assume the values of the undefined digit posi-
tion to be 0 for both coefficient strings. Using
this correlation function, the similarity F ′ be-
tween Eqs. (2) and (3) is defined as

F ′ =
1

n + 1

n∑
i=0

[
max

0≤s≤d

{
100MK̂i,Ki

(s)

−C1s}] ,
where d =

∣∣∣ ˆ||Ki|| − ||Ki||
∣∣∣ and C1 = 10 in this

experiment. The term C1s represents the ad-
verse effect due to the shift amount s. Using
this similarity, we define the functionality mea-
sure F as

F = F ′ − C2p− C3q, (5)
where p is the number of delay-free loops in the
evolved circuit, q is the number of intermediate
variables involved in term f(X1, · · · , Xn) (that
can not be eliminated through symbolic com-
putation), and C2 = C3 = 5 in this experiment.

On the other hand, the performance measure
P is defined as

P =
C4

DA
, (6)

where A is the total number of inter-module in-
terconnections and D is the maximum register-
to-register delay measured by using a 2-input
XOR gate as a unit delay element. We use
F+P as a total fitness function, where the ratio
Pmax/Fmax is adjusted about 5/100 by tuning
the constant C4.
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Fig. 6 Result of five evolutionary runs: (a) the num-
ber of generations required to obtain the first
individual having 100% functionality, (b) the
best DA product obtained in the 3000th gen-
eration.

4. Experimental Results

The target function considered here is the n-
operand bit-serial adder given by Eq. (3) with
K0 = K1 = · · · = Kn = 1. In this experiment,
we assume the condition that the population
size is 100, the maximum number of genera-
tions is 3000, the maximum number of nodes is
30, the crossover rate is 0.7, and the mutation
rate is 0.1. Figure 6 shows the result of a set
of evolutionary runs, in which the EGG system
generates n-operand adders for 2 ≤ n ≤ 10.
We perform five distinct evolutionary runs for
every n. The graph (a) plots the average of
the number of generations required to obtain
the first individual having 100% functionality.
The graph (b), on the other hand, is the av-
erage of the best DA product obtained in the
3000th generation. The error bars indicate the
variation range during five distinct runs. The
EGG system can evolve the optimal 8-operand
bit-serial adder in 3000 generations, which cor-
respond to the computation of 4.7 hours on Sun
Ultra 60 workstation (CPU: 360 MHz, Memory
1.15 GB). Figure 7 shows the best individuals
obtained in five runs for the number of operands
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Fig. 7 Best individuals obtained in the 3000th gener-
ation, where the number of operands are (a)
n = 2, (b) n = 3, (c) n = 4, (d) n = 5, (e)
n = 6, (f) n = 7, (g) n = 8, (h) n = 9, and (i)
n = 10.

ranging from 2 to 10. In every evolutionary
run, the individual having 100% functionality
was obtained within 3000 generations. We can
confirm that all the circuits consist of adder
trees with the minimum height (thus the la-
tency is minimized). For the circuits with up
to 8 operands (n ≤ 8), the amount of hardware
resources is also minimized. This implies that
the EGG system can create near-optimal circuit
structures with limited knowledge of arithmetic
algorithms.

For more detailed discussion, let us examine
the evolution process of an 8-operand bit-serial
adder as an example. Figure 8 shows the tran-
sition of the best individual fitness for 20 runs.
We can see the staircase improvements of the
best individual fitness for every trial. Figure 9
shows example snapshots of a single evolution-
ary run. The vertical axis indicates the num-
ber of generations, and the horizontal axes in-
dicate the functionality measure F and the DA
complexity. Given the initial random popula-
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Fig. 9 Example of the evolution process of an 8-
operand adder.

tion, the evolution is mainly driven towards bet-
ter functionality. Each individual shows a ten-
dency to keep a specific level of DA product cor-
responding to the target function. The first in-
dividual achieving 100% functionality appears
in the 122nd generation. This individual has
the DA product of 290. In the 3000th gen-
eration, we obtain the best adder configuration
shown in Fig. 7 (g), where the DA complexity is
reduced to 156. It can be proved that this struc-
ture consists of the minimum number of counter
stages. Thus, we can confirm the capability of
the EGG system to create sequential arithmetic
circuits through evolution without using special
knowledge of arithmetic algorithms.

Figure 10 shows the comparison of total
computation time between the EGG system us-
ing symbolic verification and that using Verilog-
HDL simulation, where each bar corresponds
to the time for a single evolutionary run. We
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Fig. 11 Evolved multiply-adder structure under the
target function: Y = 3X1 + 5X2.

can observe significant reduction in evolution
process by introducing the symbolic computa-
tion technique. The speed-up factor reaches 161
times for the case of 7-operand bit-serial adder
synthesis.

The proposed approach can be applied not
only to the synthesis of multi-operand adders
but also to other design problems by chang-
ing the target function. For example, if we
use the target function (3) with different pa-
rameters n = 2,K0 = 1,K1 = 3,K2 = 5,
we can synthesize the multiply-adder given by
Y = 3X1 + 5X2. Figure 11 shows the best
solution obtained in the 3000th generation. Al-
though further investigations will be required,
it may be possible to construct the EGG-based
arithmetic synthesis system that can handle
general design problems.

Another important issue to be addressed for
practical application of EGG system is its com-
putation time. We have recently introduced
inexpensive COTS (Commercial Off-The-Shelf)
cluster computing technique to reduce the time
for experiments of EGG-based circuit synthe-
sis. Each node of the cluster (Linux PC
with 700 MHz Pentium III and 1 GB mem-
ory) takes only 1.5 hours to generate the op-
timal 8-operand bit-serial adder in 3000 gen-
erations, which is about 3 times faster than
the computation done by Ultra 60 workstation
(360 MHz UltraSPARC-II with 1.15 GB mem-
ory). At present, by clustering 5 PC nodes,
we can achieve 5 times increase of evolution
throughput ideally, and hence total 15 times

speed-up compared with the standard worksta-
tion is expected for a large set of evolutionary
trials. Thus, this kind of inexpensive COTS
parallel processing technique provides a poten-
tial possibility of building an EGG-based CAD
system that can be applied to various practical
circuit design problems.

5. Conclusion and Future Prospects

In this paper, we have presented an applica-
tion of the EGG system to the design of bit-
serial multi-operand adders. A new functional
verification technique based on symbolic com-
putation has been proposed to evaluate func-
tions of evolved arithmetic circuits quickly. An
experimental design of multi-operand bit-serial
adders demonstrates the potential capability of
the new EGG system to generate sequential
arithmetic circuits without using special knowl-
edge of arithmetic algorithms. The listed below
are research subjects to be considered in future:
(i) We need to compare the proposed

method of synthesizing bit-serial arith-
metic circuits with the conventional rule-
based design approaches.

(ii) We must investigate a systematic way of
applying the original EGG system to var-
ious circuit synthesis problems. In or-
der to extend possible application areas,
more generic formal verification tech-
niques for sequential circuits must be in-
troduced.

(iii) In order to achieve further reduction in
computation time, we need to explore a
technique for utilizing inexpensive COTS
parallel processing technology optimized
for evolutionary graph generation.
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