
Vol. 42 No. 4 IPSJ Journal Apr. 2001

Regular Paper

A Novel Dynamically Reconfigurable Hardware-based Cipher

Zaldy Andales,†,†† Yukio Mitsuyama,† Takao Onoye†††

and Isao Shirakawa†

This paper describes a 64-bit-block, 128-bit-key, dynamically reconfigurable hardware-based
cipher, called Chameleon, in which two 32-cell, 8-context dynamically reconfigurable hardware
units are employed to generate new data-dependent subkeys for each of the 16 iterations in the
encryption/decryption process. The proposed architecture has been implemented by means
of the 0.6 µm CMOS 3LM technology, using 65.6K transistors and attaining a maximum
throughput of 317.5Mbps. The new approach provides distinctive features of enhanced com-
plexity and flexibility, while demonstrating suitability for embedded encryption/decryption
applications.

1. Introduction

Dynamically reconfigurable hardware de-
vices 1)∼8), which can change their own func-
tional configurations during runtime, are
promising candidates for hardware-based en-
cryption/decryption, because their capacity for
implementation of bit-serial operations and fast
context shifting is superior to that of processor-
based approaches. Furthermore, they provide
enhanced decryption complexity by means of a
number of sophisticated contexts dedicated to
encryption.
Recently, various approaches for applying re-

configurable hardware to cryptography have
been attempted. For example, a general-
purpose Dynamically Reconfigurable Logic En-
gine (DRLE) 1) has been devised, which can ex-
ecute the Data Encryption Standard (DES) 9)

algorithm at a speed one order of magni-
tude higher than a software implementation.
A 133MHz MIPS processor with a recon-
figurable coprocessor, called Garp 2), is re-
ported to run the DES 24 times faster than a
167MHz UltraSPARC. An architecture called
PipeRench 3), which runs at 100MHz by us-
ing a dynamically reconfigurable pipeline, im-
plements the International Data Encryption
Algorithm (IDEA) 10) with a throughput of
126.6Mbytes/s.
However, these conventional cipher schemes

with reconfigurable logic facilities are trivial
implementations of known software approaches
like the DES and IDEA. No cipher scheme

† Graduate School of Engineering, Osaka University
†† Institute of Mathematical Sciences and Physics,

University of the Philippines at Los Banos
††† Graduate School of Informatics, Kyoto University

has ever adopted an inherently dynamically re-
configurable hardware-based multi-context ap-
proach.
To provide specific features of dynamically

reconfigurable functions dedicatedly for cryp-
tography, this paper devises a novel hardware-
based cipher called “Chameleon,” which is
intended for embedded hardware encryption/
decryption applications.
The rest of this paper is organized as fol-

lows. Section 2 outlines the architecture of
Chameleon, Section 3 describes the VLSI im-
plementation of Chameleon, Section 4 dis-
cusses the distinctive features of the new ci-
pher scheme, Section 5 presents a brief com-
parative performance evaluation, and Section 6
offers some concluding remarks.

2. Chameleon: A 64-bit Block Cipher
Algorithm

2.1 Overview
Chameleon is a secret-key cryptosystem

which operates on 64-bit blocks of data one at a
time through the use of a 128-bit secret key. As
shown in Fig. 1, the operation of Chameleon is
similar to that of DES. The main difference
consists in the sophisticated data-dependent
subkey generation without the use of a Feistel
network 11).
The Chameleon architecture is outlined in

Fig. 2. The 64-bit input data are divided into
two parts: one consisting of the right 32 bits
and the other consisting of the left 32 bits. Ini-
tially, the 32 bits of data on the right are loaded
into register Y , while the 32 bits of data on the
left are loaded into register X.
Each iteration process can be divided into

two: the encryption datapath and the subkey

958

Vol. 42 No. 4 A Novel Dynamically Reconfigurable Hardware-based Cipher 959

Fig. 1 DES and Chameleon.

Fig. 2 Chameleon architecture for encryption.

generation. The former encrypts the data from
Y , while the latter produces new subkey pairs
by using the 128-bit secret key and data from
X. These subkeys are XORed with the cipher-
ing data in the encryption datapath process.

2.2 Encryption Datapath
In the encryption datapath, the data of Y

pass through a Substitution unit, which consists
of 8 S-box tables placed in parallel, where an S-
box consists of a 4-bit address × 4 bits of data
memory, like that employed in the GOST algo-
rithm 12). As shown in Fig. 2, the output data of
this Substitution are XORed with a 32-bit sub-
key (Subkey 1), and then XORed with another
32-bit subkey (Subkey 2). The resulting data,
in turn, are input to a unit of Permutation,
which rearranges the bit order of the data for
use in the next iteration, as indicated in Fig. 3.
To complete each iteration, the left 32 bits (in

X) are input to Y , while the iteration result (Z)
is input into X. This iteration is repeated 16
times, with the processes for left and right data
executed alternatively, each 8 times.
The final 64-bit encrypted result is obtained

by combining the result (Z) of the 15th itera-
tion (left 32 bits of cipher text) and the result
(Z) of the 16th iteration (right 32 bits of cipher

Fig. 3 Permutation.

Fig. 4 Circuit implementation of a rotary dial combi-
nation lock (Shifting 2 Steps to Position 2 in
the lock corresponds to choosing Circuit C2 at
Position 2 for subkey generation).

text).
The decryption process is performed in

the opposite order to the encryption process.
Specifically, the data are first input into a
unit of Inverse Permutation, next the output
is XORed with Subkey 2, and then with Sub-
key 1, and finally the resulting data are fed to
a unit of Inverse Substitution.
Since the encryption and decryption datap-

aths are distinct from each other, multiplexers
are placed in the data loop in order to arbitrate
between these datapaths.

2.3 Subkey Generation
The subkey generation process is based on

the principle of a rotary dial combination lock,
which is commonly used in vaults and safes.
Figure 4 shows a dial with 8 positions. To
open such a lock, a correct sequence of turning
steps must be performed in accordance with a
specified secret code/key. In effect, the state
of the lock changes at each iteration of the
knob setting from one position to another. An
8-context dynamically reconfigurable hardware
unit is employed to implement this dial lock,
where each context configuration (i.e., each of
the circuits C0, C1, C2, . . . , C7) corresponds to
a position (0 to 7) on the dial. A 3-bit Con-
text Index specifies a context configuration (i.e.,
Ck) to be used, as will be described later.
It can be seen from Fig. 2 that

(1) A 128-bit secret key is divided into four
segments such that the first 32-bit key
is designated as Sequence Key, and the
subsequent three as Parallel Keys 1, 2,
and 3.

960 IPSJ Journal Apr. 2001

(2) The subkey generation process is per-
formed by two major components, one
composed of two Context Index Sequence
Generators (CISGs), and the other of
units of Reconfigurable Logic (RL) and
Reconfigurable Interconnect (RI), where
the former CISGs are to generate the
Context Indices which fix a configuration
of RL and RI, and the latter RL and RI
are to produce Subkeys 1 and 2, respec-
tively.

The Context Indices 1 and 2 to be input to
RL and RI, respectively, should be different
at each iteration, and therefore two CISGs are
employed.
The data of Sequence Key are loaded into the

two CISGs, which produce Context Indices to
be input to RL and RI. The data of Paral-
lel Key 1, Parallel Key 2, and X together with
Context Index 1 are input to RL to be trans-
formed into Subkey 1. Similarly, the data of
Parallel Key 3 and X together with Context
Index 2 are input to RI to be transformed into
Subkey 2. These key transformations should
keep pace with the encryption datapath opera-
tions.

2.4 Context Index Sequence Genera-
tors

32-bit Sequence Key is used to produce Con-
text Indices 1 and 2, each constituting a se-
quence of sixteen 3-bit numbers. The mecha-
nism for generating Context Index is exempli-
fied in Figs. 5 (a) and (b), where the first and
second halves are generated, respectively.

Fig. 5 Sample Context Index sequence generation.

Figure 6 shows the algorithm for generating
Context Index. Given a 32-bit Sequence Key,
first consider the generation of the first half of
Context Index. As shown in Fig. 5 (a), the pro-
cess of calculating 3-bit Steps, 3-bit Positions,
and 3-bit Context Index numbers is executed
for Nibbles 1, 2, . . . , 8, one at a time in this or-
der. Now, consider the generation of the sec-
ond half. In this case, as shown in Fig. 5 (b),
the process of calculating 3-bit Steps, 3-bit Po-
sitions, and 3-bit Context Index numbers is ex-
ecuted in the reverse order, that is, first for
Nibble 8, then for Nibble 7, and so forth.
Thus the process flow of CISG can be drawn

as shown in Fig. 7.
In connection with this Context Index gener-

ation, it should be noticed that
(1) For ease of implementation, Step at

Nibble k (1 ≤ k ≤ 8) in the second half is

Procedure Generation of Context Index (): (encryp-
tion)
1 Position = 0, Nibble no = 0,

Nibble Array[1 to 8] = array of
Sequence Key nibbles from left to right

2 repeat (First half)
3 Nibble no = Nibble no +1
4 Nibble (= [b3, b2, b1, b0])

= Nibble Array[Nibble no]
5 Step (3 bits) = Nibble to Step (b3, b2, b1, b0)
6 Position = Position + Step mod 8
7 Context Index = Position

(set A Position-Context assignment)
8 until (Nibble no = 8)
9 repeat (Second half)
10 Context Index = Position ⊕ Transform constant

(set B Position-Context assignment)
11 Nibble (= [b3, b2, b1, b0])

= Nibble Array[Nibble no]
12 Step (3 bits) = Nibble to Step (b3, b2, b1, b0)
13 Position = Position – Step mod 8
14 Nibble no = Nibble no – 1
15 until (Nibble no = 0)

(a) Algorithm

Nibble to Step =

[
(b0 ⊕ b2), (b3 ⊕ b2), (b1 ⊕ b2)

]
⊕

([b3, b3, b3] ∧ (Transform constant));
for RL[

(b3 ⊕ b0), (b2 ⊕ b0), (b1 ⊕ b0)
]
⊕

([b3, b3, b3] ∧ (Transform constant));
for RI

Transform constant =

{
101; for RL

011; for RI

(b) Nibble to Step and Transform constant

Fig. 6 Algorithm for generating Context Index.

Vol. 42 No. 4 A Novel Dynamically Reconfigurable Hardware-based Cipher 961

Fig. 7 Process flow of the Context Index Sequence
Generator.

equal to the negative value of Step at the
same Nibble in the first half, so that the
the values of initial and final positions
can both be 0.

(2) The decryption process can be obtained
by exactly reversing the order of the en-
cryption process, and hence Position al-
ways starts and ends at 0 in both the
encryption and decryption processes.

(3) Context Indices 1 and 2 can be obtained
through the use of RL and RI, respec-
tively, in parallel.

Finally, it should be added that a user can
specify Transform constant at random: here we
have fixed its values as 101 and 011 for RL and
RI, respectively.

2.5 Reconfigurable Units
Details of the structures of the 8-context RL

and RI are shown in Figs. 8 (a) and (b), re-
spectively. RL consists of an 8 × 4 array of
basic cells, each of which is labeled accord-
ing to the subkey output bit. A basic cell is
composed of an 8-context 3-input lookup ta-
ble (LUT) and an 8:1 Multiplexer, which has
been already adopted in DeHon 6) and Tau, et
al. 7) As shown in Fig. 8 (a), the 3-bit data in the
three registers (X , Parallel Key 1, and Parallel
Key 2) are input to a basic cell. The config-
uration of RL is determined by Context Index
1.
In the example shown in the figure, Context

Index 1 addresses “context 3” of the context
memory, while the 3-bit input to 8:1 Multi-

Fig. 8 8-context reconfigurable units.

plexer from X and Parallel Keys 1 and 2 ad-
dresses “bit 2” of the context memory. Thus
the context data “1” at this location serves as
the final output of the cell.

RI consists of an 8 × 4 array of basic cells,
each of which contains two 4:1 and one 2:1 Mul-
tiplexers. The input to the left 4:1 Multiplexer
is from X, while the input to the right 4:1 Mul-
tiplexer is from Parallel Key 3. Context Index
2 is used to single out one configuration among
the 8 contexts. The output of either of the two
4:1 Multiplexers is selected by the 2:1 Multi-
plexer according to the MSB (most significant
bit) of Context Index 2. In effect, each cell func-
tions as a context-based multiplexer.
In the example shown in the figure, Context

Index 2 selects “context 5” in the context mem-
ory, and the data at this context is “3,” which
causes each of the two 4:1 Multiplexers to se-
lect “bit 3” of the 4-bit inputs. Finally, the
MSB “1” of Context Index 2 selects the chosen
bit from Parallel Key 3 (bit 3 = 0) to generate
the final cell output “0”.
The context configuration data necessary for

RL occupy 2,048 bits (32 cells × 8 contexts ×
8 bits/cell), while those necessary for RI occupy
512 bits (32 cells × 8 contexts × 2 bits/cell).
Thus the context configuration data necessary
for RL and RI occupy a total of 2,560 bits
(320 bytes). To produce random subkeys, the

962 IPSJ Journal Apr. 2001

Fig. 9 Overall architecture of the Chameleon cipher
chip.

context data should be as random as possible,
with all the contexts in a basic cell functionally
distinct from one another. With this restric-
tion, basic cells inRL andRI can have 28P8 and
(22P4)2 sets of possible permutations of context
values, respectively.

2.6 Overall Architecture
Figure 9 shows the overall architecture of

the proposed Chameleon cipher chip. I/O
lines consist of distinct 32-bit Data-in/Data-out
lines, 7-bit Context memory address lines, and
so forth. The 2-bit Mode lines select one of the
4 operation modes, namely, idle, context-load,
key-load, or run mode.
In the context-load mode, 32-bit context con-

figuration data are loaded a total of 80 times
through the Data-in lines of Fig. 9 into the
context memories of RL and RI, in each of
which the memory address is specified by the
7-bit Context memory address lines. The repro-
grammable property of the context data will be
described in Section 4.2.
In the key-load mode, 32-bit key data are

loaded through Data-in lines into the registers
of Sequence Key and Parallel Keys, one at a
time, to form the whole 128-bit secret key.
In the run mode, a 3-stage pipeline process

is invoked, which consists of a data input load-
ing stage, a 16-iteration encryption/decryption
processing stage, and a data output reading
stage. In the first stage, Data-in lines are con-
nected alternately to registers X-in and Y-in to
load the left and right halves of the 64-bit in-
put (plain/cipher text) data, respectively. The
next stage performs the encryption/decryption
on the loaded data, which outputs the results
into registers X-out and Y-out, respectively. In

Table 1 Main characteristics of the Chameleon
cipher chip.

Technology 0.6µm CMOS 3LM
Core size 3.1 × 3.1 mm2

Transistors 65.6K
Max. clock frequency 178.6MHz
Max. data throughput 317.5Mbps
Pins 82 (signal) + 32 (power)

120-pin package
I/O 32-bit parallel × 2

(plain text/key/context,
cipher text)

Supply voltage 5V

the last stage, Data-out lines output alternately
the left and right halves of the final 64-bit data
obtained in the encryption/decryption stage.

3. VLSI Implementation Results

The Chameleon cryptosystem has been syn-
thesized through Verilog HDL description. The
synthesis tools used were Verilog-XL, the Syn-
opsys Design compiler, and Avant! Apollo.
However, the reconfigurable units, which con-
sist mainly of SRAM memory cells, were imple-
mented by using the custom layout of Cadence
Virtuoso.

Table 1 shows the implementation results
obtained by using the 0.6µm CMOS 3LM tech-
nology. The critical path, starting from X,
passing through RL, two XORs, decryption In-
verse Substitution, and terminating at X, is
5.6 ns. Thus we have obtained a maximum
clock frequency of 178.6MHz. With each 64-
bit block encryption/decryption processed in
36 clock cycles, the corresponding maximum
data throughput is 317.5Mbps. The encryption
and decryption use the same subkey generation,
but are multiplexed in the datapath functions.
Both are set to run at the same speed, deter-
mined by the decryption-based critical path.

Figure 10 shows a micrograph of the ob-
tained chip, where RL and RI occupy almost
30% of the total chip area. Figures 11 and
12 show the basic cell architecture of RL and a
part of the simulation waveforms for the subkey
generation in RL, respectively, while Figs. 13
and 14 show the same for RI.
As can be seen from the example of Fig. 12,

when the context selector signal WL1, inputs
IN0 and IN1, and the SENSE signal all rise to
a certain level, the generation of Data3 taken
from “bit 3” of the context memory is triggered
to generate the output signal OUT. As indi-
cated in the figure, a stable output is attained
3 ns after the trigger activation.

Vol. 42 No. 4 A Novel Dynamically Reconfigurable Hardware-based Cipher 963

Fig. 10 Micrograph of the Chameleon cipher chip.

Fig. 11 Basic cell architecture of RL.

Fig. 12 Simulation waveforms of the basic cell in RL
(subkey generation).

On the other hand, as can be seen from the
example of Fig. 14, when the context selector
signal WL5 and the SENSE signal both rise to a
certain level, the generation of Data1 and Data0
taken from “bit 1” and “bit 0”, respectively,
of the context memory is triggered to generate
OUT B and then the output signal OUT. As
shown in the figure, a stable output is attained

Fig. 13 Basic cell architecture of RI.

Fig. 14 Simulation waveforms of the basic cell in RI
(subkey generation).

1.5 ns after the trigger activation.

4. Distinctive Features

4.1 Multiple Paths
The security of Chameleon lies mainly in the

difficulty of regenerating the data-dependent
subkeys at each iteration through the use of
multiple contexts in the algorithm. Unlike
cryptosystems which employ only one set of cir-
cuits to be used repeatedly, Chameleon uses 8
possible circuits (contexts). By means of the
rotary dial-based algorithm for the Context In-
dex generation, circuits can change at each it-
eration, thereby increasing the complexity of
the task for the attacker/decoder. The possi-
ble number of paths for the subkey generation
is 816; i.e., 248 or 2.8 × 1014. In contrast, ex-
isting algorithms use only 1 path—that is, one
fixed circuit—through all iterations.

4.2 Reprogrammable Context Data
In addition to being dynamically reconfig-

964 IPSJ Journal Apr. 2001

Table 2 Comparison of Chameleon and MISTY (hardware) 15).

Characteristic Chameleon MISTY1 43 MISTY1 3
Block size 64 bits 64 bits 64 bits
Key size 128 bits 128 bits 128 bits
Iterations 16 8 8
Technology 0.6 µm CMOS 0.8 µm CMOS 0.8 µm CMOS
Gates 16.4 K 6K 25 K
Clock frequency 178.6MHz 55 MHz 16 MHz
Encryption speed 317.5Mbps 100 Mbps 512 Mbps
Mbps/Kgates 19.4 16.7 20.5

urable, the context configuration data of RL
and RI are also reprogrammable, and this prop-
erty enhances Chameleon’s flexibility of use. In
contrast to a secret key, which is kept private
by a user, the context data may be adopted
for common use within an organization and
changed according to the users, applications,
periods, and so on. Although the security does
not lie in keeping the context configuration data
secret, this user-modifiable data can be used
as an extra 2.5Kbits of secret-key information.
Thus a user can have the option of keeping this
information secret within the domain of oper-
ation as an additional security measure. The
trade-offs for this flexibility are an increase in
the area for the subkey generation in propor-
tion to the number of added contexts, as well
as the necessity for initial context data loading.
To minimize this loading process, the context
data can be kept unchanged for a certain period
of operation. On the other hand, a frequent
change in the context data can prevent crypt-
analytic attacks from being attempted against
the context data. The frequency of context
data change is arbitrarily fixed, depending on
the user’s security requirement.

4.3 Randomness of Cipher Text
We have investigated the degree of random-

ness of the cipher text by means of a collision
test 13) on 212 (= 4,096) samples of correspond-
ing 16-bit segments of cipher text blocks. This
test evaluates 16-dimensional randomness for
216 (= 65,536) possible collisions. The cipher
text for this test is generated under the prob-
able condition that the secret key is set to all
zeros and the sequence of input plain texts are
incremented through a counter. A test on eight
sets of 4,096 samples attained an average of 122
collisions. The average of the total number of
collisions of a well randomized data set should
be between 119 and 134. Noting that the ideal
average is 4,0962/(2 · 65,536) = 128, we can
see that Chameleon can achieve an almost ideal
randomized cipher text.

5. Applications and Comparative Eval-
uation

Chameleon aims mainly at embedded hard-
ware applications in communication and multi-
media systems and devices, data networks, and
so on, where the chip size and speed are of pri-
mary importance.
Major popular encryption algorithms, such

as 128-bit block Advanced Encryption Stan-
dard (AES) candidates 14), target the whole
spectrum of applications for high-end software,
smartcards, FPGAs, and LSIs, and hence an
increase in chip area is inevitable. For ex-
ample, a pipelined 128-bit key implementa-
tion of Serpent achieves the fastest throughput
at 8.03Gbps with a large transistor count of
around 5.7M. An iterated 128-bit key imple-
mentation of Twofish attaining 105Mbps has a
large transistor count of 264K. Thus AES can-
didates with a large block size (128 bits) and
thereby a larger transistor count, are less suited
to embedded applications.
On the other hand, a rough comparison can

be performed between Chameleon and MISTY
cores 15),16), commercial ciphers with 64-bit
data block size and 128-bit key, which are in-
tended for software and embedded hardware
applications. Table 2 shows the major charac-
teristics of Chameleon and two MISTY cores.
It can be observed that although Chameleon
is comparable to MISTY1 43 and MISTY1 3
in terms of Mbps/Kgates, the comparison may
have some discrepancies. For example a MISTY
core uses only 0.8µm CMOS technology, while
Chameleon uses 0.6µm CMOS technology, and,
as regards complexity, Chameleon performs 16
iterations, while MISTY performs only 8 itera-
tions. It should also be remarked that the speed
advantage of MISTY1 3 can be accounted for
by the presence of a full repetition structure of
the 8 iterations, which is not included in the
current Chameleon prototype chip.
Thus, we can verify that Chameleon, like

Vol. 42 No. 4 A Novel Dynamically Reconfigurable Hardware-based Cipher 965

MISTY, is suitable for current embedded ap-
plications.
Unlike a general-purpose reconfigurable

FPGA-like device 1), the proposed Chameleon
cipher chip is a special-purpose implemen-
tation, whose size can be reduced. Since
Chameleon requires two types of circuits, dy-
namically reconfigurable and fixed, a hybrid ar-
chitecture can be employed so as to optimize
the silicon area by assigning a relatively large
area to the dynamically reconfigurable part of
RL and RI, but a fairly small area to the re-
maining fixed part.
In contrast to a special-purpose implemen-

tation, a general-purpose implementation can
be enhanced in such a way that communica-
tion facilities such as channel codec and pro-
tocol stack control can be added to the cipher
scheme. Consequently, there is a trade-off be-
tween chip size and programmability for multi-
ple applications.

6. Conclusion

This paper has described the architecture
and VLSI implementation of Chameleon, a
novel dynamically reconfigurable hardware-
based secret-key cryptosystem. Through the
use of multi-context units, the number of possi-
ble paths for data-dependent subkey generation
is increased to 816. Furthermore, flexibility is
attained by exploiting the reprogrammable fea-
ture of reconfigurable units. According to the
implementation results, Chameleon realizes a
maximum data throughput of 317.5Mbps with
65.6K transistors, and hence this cipher can be
of practical use for embedded hardware appli-
cations in communication and multimedia sys-
tems, data networks, and so forth.
Development work is continuing on a sophis-

ticated low-power system-on-a-chip integration
of the second-generation Chameleon equipped
with communication facilities such as channel
codec, protocol stack control, etc., dedicated to
mobile applications.

7. Acknowledgments

The authors would like to thank Profes-
sor Toru Fujiwara for his constructive com-
ments and suggestions, and Makoto Furuie and
Morgan Hirosuke Miki for their invaluable as-
sistance in the chip implementation.
The proposed cipher has been fabricated in

the fabrication program of VDEC (VLSI De-
sign and Education Center), the University of

Tokyo, with the collaboration of Rohm Corpo-
ration and Toppan Printing Corporation.

References

1) Fujii, T., Furuta, K., Motomura, M., Nomura,
M., Mizuno, M., Anjo, K., Wakabayashi,
K., Hirota, Y., Nakazawa, Y., Ito, H. and
Yamashina, M.: A Dynamically Reconfigurable
Logic Engine with a Multi-context/Multi-mode
Unified Cell Architecture, ISSCC Digest of
Technical Papers, pp.364–365 (1999).

2) Hauser, J.R. and Wawrzynek, J.: Garp: A
MIPS Processor with a Reconfigurable Copro-
cessor, Proc. Symposium on FCCM, pp.12–21
(1997).

3) Goldstein, S.C., Schmit, H., Budiu, M.,
Cadambi, S., Moe, M. and Taylor, R.R.:
PipeRench: A Reconfigurable Architecture
and Compiler, IEEE Computer, Vol.33, No.4,
pp.70–77 (2000).

4) Hauck, S.: The Roles of FPGA’s in Repro-
grammable Systems, Proc. IEEE, Vol.86, No.4,
pp.615–638 (1998).

5) Higuchi, S. and Kajihara, N.: Evolvable Hard-
ware Chips for Industrial Applications, Com-
mun. ACM, Vol.42, No.4, pp.60–69 (1999).

6) DeHon, A.: Reconfigurable Architectures for
General-Purpose Computing, AI Technical Re-
port 1586, MIT Artificial Intelligence Labora-
tory, Cambridge (1996).
ftp://publications.ai.mit.edu/ai-publications/
1500-1999/AITR-1586.ps

7) Tau, A., Chen, D., Brown, J. and DeHon,
A.: A First Generation DPGA Implementation,
Proc. 3rd Canadian Workshop of Field Pro-
grammable Devices, pp.138–143 (1995).

8) Villasenor, J. and Hutchings, B.: The Flexi-
bility of Configurable Computing, IEEE Sig-
nal Processing Magazine, Vol.15, No.9, pp.67–
84 (1998).

9) National Bureau of Standards, Data Encryp-
tion Standard, U.S. Department of Commerce,
FIPS pub. 46 (1977).

10) Lai, X. and Massey, J.: A Proposal for a
New Block Encryption Standard, Advances in
Cryptology – EUROCRYPT ’90 Proceedings,
pp.389–404, Springer-Verlag (1991).

11) Feistel, H.: Cryptography and Computer
Privacy, Scientific American, Vol.228, No.5,
pp.15–23 (1973).

12) Schneier, B.: Applied Cryptography, 2nd ed.,
John Wiley and Sons, NY (1996).

13) Knuth, D.: Seminumerical Algorithms, Art of
Computer Programming, Vol.2, 2nd ed., pp.68–
70, Addison-Wesley, MA (1981).

14) Weeks, B., Bean, M., Rozylowicz, T. and
Ficke, C.: Hardware Performance Simulations

966 IPSJ Journal Apr. 2001

of Round 2 Advanced Encryption Standard Al-
gorithms, National Security Agency, pp.37–38
(2000).
http://csrc.nist.gov/encryption/aes/round2/
NSA-AESfinalreport.pdf

15) Mitsubishi Electric Corp.: MISTY1 mega-
function (1998).
http://www.mitsubishi.com/ghp japan/misty/
misty1megafunc.htm

16) Matsui, M.: New Block Encryption Algorithm
MISTY, Proc. 4th Fast Software Encryption
Workshop (1997).

(Received September 18, 2000)
(Accepted February 1, 2001)

Zaldy Andales received the
B.S. degree in Applied Physics
from the University of the
Philippines (UP) at Los Banos
in 1991. After graduation, he
joined the Institute of Math-
ematical Sciences and Physics,

UP Los Banos. He later obtained the M.S.
degree in Electrical Engineering from UP Dil-
iman in 1996. Currently, he is pursuing a
doctorate degree in Information Systems En-
gineering at Osaka University, Japan under
the Japanese Government (Monbukagakusho)
scholarship. His research interests are in VLSI
design and information security.

Yukio Mitsuyama received
the B.E. and M.E. degrees in In-
formation Systems Engineering
from Osaka University, Japan,
in 1998 and 2000, respectively.
He is currently pursuing a doc-
torate degree in the same field

also at Osaka University. His research inter-
ests include VLSI design and implementation
of multimedia and security systems.

Takao Onoye received B.E.
and M.E. degrees in Electronic
Engineering, and Dr.Eng. de-
gree in Information Systems En-
gineering all from Osaka Univer-
sity, Japan, in 1991, 1993, and
1997, respectively. He joined the

Department of Information Systems Engineer-
ing, Osaka University in 1993 as a research as-
sociate, where he was promoted to a lecturer
in 1998. Meanwhile, he was with the ICS De-
partment, University of California, Irvine, as
a visiting associate researcher in 1997–1998.
Presently, he is an Associate Professor in the
Department of Communications and Computer
Engineering, Kyoto University. He has also
served a principal research scientist of Arnis
Sound Technologies, Co., Ltd. His research in-
terests include media-centric low-power system
architecture and its VLSI implementation.

Isao Shirakawa received
the B.E., M.E., and Ph.D. de-
grees in Electronic Engineering
from Osaka University, Japan,
in 1963, 1965, and 1968, respec-
tively. He joined the Depart-
ment of Electronic Engineering

at Osaka University in 1968 as a Research Assis-
tant. He became an Associate Professor in 1973
and a Professor in 1987 and is now a Professor
in the Department of Information Systems En-
gineering. During 1974–1975, he was with the
Electronic Research Laboratory, University of
California, Berkeley, as a Visiting Scholar. In
1996 and 1997, he was a Director of the edi-
torial board of IEICE of Japan. He has been
engaged in education and research mainly on
the basic circuit theory, applied graph theory,
VLSI CAD, and VLSI implementation. Prof.
Shirakawa was a Vice President of the IEEE
CAS Society in 1995 and 1996. He is a Fellow
of the IEEE and a Fellow of the IEICE.

