THEH S 241 CPRR 2 40D £ EAS

7V 27 FERBMESECOB

hNEF R

- BREHAHECERELH

LH B

BARA7AE-—TLRFEEBRHARM

1 Introduction

The popularity of C-based object-oriented programming
(OOP) has grown in recent years. In particular, C++ [5]
is rapidly gaining acceptance by a large number of users.
As these users accumulate experience, they have found
certain common problems, which can be summarized as
follows:

e Intraciable run-time errors. Major sources are type
misinterpretation, illegal pointer dereferencing, and
failure of storage management. The errors usually
result in a segmentation fault, and disable even a
debugger.

o Long recompilation time. More often, a slight mod-
ification to a source code causes a massive recompi-
lation.

o Limited modularity and reusability.

COB (C with OBjects) is a new object-oriented lan-
guage, upward compatible with C, that is being devel-
oped at IBM’s Tokyo Research Laboratory. The lan-
guage attempts to address the above problems by putting
as much emphasis on facilitating programming activities
as on the quality of the final object code. In particular,
the following design goals have been set up.

e Decreasing the number of error sources by providing
safe language constructs and garbage collection.

e Increasing the modularity of program components.

e Maintaining compatibility with C.

e Recovering good run-time performance by extensive
optimizations in a completed program.

2 Major Features

We describe in this section major features of COB such
as classes, inheritance, objects, and type safety. We does
not cover a number of features in COB, among which are
exception handling and variable-sized objects. See [1] for
these features.

The COB Programming Language -
Tamiya Onodera, Tsutomu Kamimura
|BM Research, Tokyo Research laboratory

Design Goals and Major

class € < X { // interface
int pub_ivar;
int pub_ifunc(void);
common:
int pub_cvar;
int pub_cfunc(void);

};

class impl C < Y { // implementation
struct Tag { ... }; // local to class C
typedef struct Tag *TagPtr; // local to class C

TagPtr priv_ivar;

TagPtr priv_ifunc(void);
common :

int priv_cvar;

int priv_cfunc(void);
definition:

int priv_ifunc(veid){...}

};
Figure 1: Class Definition in COB

2.1 Classes

COB promotes the organization of programs around
classes in a similar way to C++. A class defines a type,
instances of the type are called objects.

A class is defined by its interface and its implementa-
tion. The greatest differences from C++ are that a class
interface specified by using the class construct contains
only public declarations and that a class implementation
given by the conjugate construct of class impl includes
all the private declarations as well as the function defini-
tions in the class. Figures 1 shows an example of a class
definition in COB.

The implementation of complete separation is pre-
sented in [3] together with performance results.

2.2 Inheritance

COB supports multiple inheritance. A class may be in-
herited by another class as a private or public superclass.
A public inheritance introduces subtyping. That is, a su-
perclass becomes a supertype of a class, which is in turn
a subtype of the superclass.

Features



5—53

The overall emphasis as regards inheritance in COB
is on simplicity and resuability of classes. First, every
public instance function member of a superclass can be
redefined in a subclass, or is virtual in C++ terminology.
Second, in order to resolve conflicts of member names
inherited from superclasses, COB allows inherited mem-
bers to be renamed. Renaming is also used to give more
appropriate names in a subclass.

class Stack < LinkedList (insert as push, get
as pop) {...}

2.3 Object Creation and Deletion

The semantics of objects and variables of a class type
is also different from that of C++, and is close to that
of CLU [4]. Objects are created only in a heap by the
common function new, variables of a class type are just
used in a program to refer to objects, and the garbage
collector automatically reclaims unused objects. The im-
plementation and performance results are presented in
2.

The two instance functions init and final play spe-
cial roles in object creation and deletion. The function
new is antomatically generated by the translator from the
init function. When the garbage collector destroys an
object, the final function is automatically called. The
garbage collector also destroys any references to other
objects from the garbage, if any.

2.4 Type Safety

While the type conversion from a subtype to a super-
type is implicit and always valid, the conversion from a
supertype to a subtype, called a downward conversion,
must be made explicit with the cast operator. If the con-
version is invalid, this causes a run-time type conversion
error. Two safeguards are also embedded into translated
code to maintain memory and type consistency: an array
bounds check and a null dereferencing check.

COB provides a generic class Any. A variable of the
type Any can take on a value of any class type, and can
be made specific at run time in the same way as in down-
ward conversion.

3 Rationale for the Design

The heap-onl]y allocation of objects brings significant
benefits to COB. First, it makes the semantics of objects
and variables of a class type clean and simple. Second, it
eliminates the absolute need for the translator to know
the size of a class. This is a valuable step towards the
complete separation of interface and implementation. Fi-

nally, it allows a faster and safer garbage collection: it is
no longer necessary to decide whether objects come from
the stack or the heap. C++ was not designed in this way,
mainly because of the efficiency of stack allocation ({5,
p.145). However, experience with the early version of
COB, which allows stack allocation, shows that very few
objects are automatic.

Interface simplification has a strong impact on pro-
gram development. Experience also shows that many of
the modifications to a class declaration only involve pri-
vate members or private superclasses. All of them led
to tedious recompilation in the early version of COB,
as in C++. This problem of long recompilation can be
avoided by a complete separation of interface and imple-
mentation.

Besides, every function member being redefinable pro-
motes reusability, since a class is often reused by defining
a slightly different version of an instance function of the
class. The keyword virtual in C++ is a hint to the
translator for generating efficient code, but it prevents
reuse: programmers need to edit the source code when
they want to redefine an instance function that is not
declared as virtual.

4 Conclusion

Initial experience with COB indicates that support of
high-level constructs, such as run-time type checking
and garbage collection, provides significant advantages
in many areas of application.

Acknowledgements

We would like to thank Nori Suzuki, Carl Hewitt, Brent
Hailpern, and members of the programming language
group for their helpful criticisms and discussions.

References

(1] COB Language Manual. IBM Research, Tokyo Re-
search Laboratory, 1990.

[2] Kuse, K. et al. Automatic Storage Management
System in COB. o appear in {1th Annual Conven-
tion of IPSJ.

(3] Yasuda, K. et al. The COB Programming Language
- Implementation. to appear in §1th Annual Conven-
tion of IPSJ.

[4] Liskov, B. et al. CLU Reference Manual. Springer-
Verlag, 1981.

[5] Stroustrup, B. The C++ Programming Language.
Addison-Wesley, 1986.



