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1 Introduction

On developing large-scale programs with object-oriented
concurrent programming (OOCP) languages, we generally
acknowledge that inheritance is one of the most essential fea-
tures. However, it has been previously pointed out that in-
heritance and synchronization constraints in concurrent ob-
ject systems often conflict with each other[l, 2]. For this
reason, some languages such as ABCL/1[13] do not employ
inheritance. Although several solutions[3, 4, 7, 10, 12] have
been proposed in the past, we argue that, unfortunately,
most of the proposals render inheritance totally useless.

2 Synchronization Constraints, Speci-
fication, and DKSS

A concurrent object in a certain state can accept only a
subset of its entire set of messages in order to maintain its
internal integrity. We call such a restriction on acceptable
messages the synchronization constraint. In most OOCP
languages, the programmer gives either implicit or explicit
program specification to control the set of acceptable mes-
sages. We call such specification the synchronization speci-
fication. The synchronization specification must always be
consistent with the synchronization constraint of an object;
otherwise the object might accept a message which it really
should not accept, causing an error.

In some of the previous proposals, the programmer writes
down explicit synchronization specification with what we call
the accept set, i.e., the set of acceptable method keys{7].
Some other proposals provide indirect schemes for manipu-
lating such sets[10, 12]. We categorize these schemes as the
Direct Keyset Specification Scheme (DKSS). Then, we can
show for that, for proposals employing DKSS, the anomaly
in inheritance occurs where re-definitions of all relevant par-
ent methods are necessary.

3 An Example of Inheritance Anomaly

The example we give is a bounded buffer class, which also
appears in[6, 7, 12].

Figure 1 shows a definition in the notation similar to
Kafura’s[7]. It is a first-in first-out buffer that can contain
at most size items. The method put() stores one item in
the buffer and get () removes the oldest one. (The code for
accessing the local array storage for insertion and removal
is omitted for brevity.) Two instance variables in and out
count the total numbers of items inserted and removed, re-
spectively, and act as indices into the buffer. Upon.creation,
the buffer is in the empty state, and the only message ac-
ceptable is put(); arriving get () messages are not accepted
but kept in the message queue unprocessed. When a put()
message is processed, the buffer is no longer empty and can
accept both put() and get() messages, reaching a ‘partial’
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Class b-buf: Object { /# b-buf is a subclass of Object =/
int in, out;

behavior: empty ={ put() };
partial = { put(), get() };
full = { get() };
public: void b-buf() { in = out = 0;

become empty;

in++; /#* insert an item #*/
if (in == out + size) become full;
else

void put() {

out++; /# remove an item %/
if (in == out) become empty;
else become partial;

}
void get() . {

Figure 1: The Bounded Buffer Class Example

{(non-empty and non-full) state. When the buffer is full, it
can only accept get(), and after processing the get() mes-
sage, it becomes partial again.

In Figure 1, the behavior statements declare three
sets of keys named empty, partial, and full assigned to
{put O}, {put(),get (D}, and {get ()}, respectively. A syn-
chronization specification is given using the become state-
ments, each of which designating the set of method keys
acceptable in the next state. We call such a set the nezt
accept set. A method typically ends with conditional state-
ments specifying the next accept set in order to maintain the
consistency between the synchronization specification and
the synchronization constraint. For example, in the defi-
nition of get(), when (in == out) (i.e., the buffer becomes
empty), become empty is executed and the next accept set
becomes {put ()}, which does not contain get(); as a result,
the get () messages become unacceptable.

Now, consider creating a class x-buf, a subclass of b-buf.
X-buf has one additional method get2(), which removes the
two oldest items from the buffer simultaneously. The corre-
sponding synchronization constraint for get2() requires that
at least two items remain in the buffer. As a consequence,
the partial state must be partitioned into two — the state
in which exactly one item exists, and the remaining states.
In order to cope with the new constraint, we need another
accept set x-one that represents the former state (Figure 2).

Then, notice that NONE of the methods (except the ini-
tializer) in b-buf can be inherited, and as a consequence,
the programmer is forced to rewrite both put() and get()
to maintain consistency with the new constraint! In fact,
we can easily create a example where inheritance is almost
totally useless for all languages classified as DKSS in a sim-
ilar manner as above. Furthermore, we can show that the
situation is even more serious — the addition of methods in
the subclasses would generally exhibit this anomaly, except
for special identifiable cases where previous proposals have
claimed to work.

become partial;



Class x-buf: b-buf { /* x-buf is a subclass of b-buf */
behavior: x-empty = renames empty;
x-ona = {put(),get};
x-partial = {put(),get(),get2()} redefines partial;
x~-full. = {get(),get20)} redefines full;
public: void x-buf() { in = out = 0; become x-empty; }

void get2()
{ out += 2; /% addition of get2() */
if (in == out) become x-empty;
else if (in == out + 1) become x-one;

else become x-partial;
/* below re-defines the corresponding methods in b-buf */
void get() {
out++;
if (in == out) become x-empty;
else if (in == out + 1) become x-one;
else become x-partial;
}
void put() {
int+;
if (in == out + size) become x-full;
else if (in == out + 1) become x-one;
else become x-partial;
}

Figure 2: The Extended Bounded Buffer Class Example

4 Why Does Anomaly Occur?

Now, what is the main cause of the anomaly? It is due to the
properties of the class hierarchy with respect to accept sets.
In the proposals, the accept sets are treated as first-class en-
tities within the program description. Then, we can formally
prove, based on Cook-Palsberg inheritance semantics[5], that
the synchronization specifications of the parent classes must
be modified on creation of a new subclass{11]. The only way
to avoid this is to allow reference to the method keys of the
child classes in the synchronization specifications of the par-
ent classes. But this is not allowed, as one-way references of
method keys from child classes to their parents is one of the
general properties of inheritance.

5  Attaining the Efficiency of DKSS
Using Program Transformation

We can further show that anomaly can be avoided by at-
taching a predicate to each method as a guard for synchro-
nization specification. What then, was the motivation in the
previous proposals for employing DKSS for synchronization
specification in the first place? We speculate that efficiency
is one of the prime motivations. Most naive implementations
of guards would not be very efficient, as one must scan down
and re-evaluate the guards in the queue for each message
acceptance.

For the purpose of attaining the efficiency of the DKSS-
with guards, we can use program transformation to convert
the method definitions with guards to an equivalent one us-
ing DKSS(8]. The difference from the previous proposals is
that this transformation is totally invisible to the program-
mer. Therefore, the full benefit of inheritance can be at-
tained without sacrifices in efficiency. The correctness of
the transformation up. to arrival-order nondeterminism can
be proven by showing that the concurrent objects before and
after the transforma,txon are bisimilar in the sense of Milner’s
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