S4-FACTORIZATION ALGORITHMS OF COMPLETE BIPARTITE GRAPHS

4 C - 2

Kazuhiko USHIO and Reiji TSURUNO Kinki University

Abstract. In this paper, a necessary condition for the existence of an S_4 -factorization of $K_{m,n}$ is given. Several types of construction algorithms of S_4 -factorization of $K_{m,n}$ are also given.

1. Introduction

Let S_4 be a star on 4 vertices and $K_{m,n}$ be a complete bipartite graph with partite sets V_1 and V_2 of m and n vertices each. A spanning subgraph F of $K_{m,n}$ is called an S_4 -factor if each component of F is isomorphic to S_4 . If $K_{m,n}$ is expressed as an edge-disjoint sum of S_4 -factors, then this sum is called an S_4 -factorization of $K_{m,n}$.

2. S4-factor of Km. n

Theorem 1. $K_{m,n}$ has an S_4 -factor if and only if (i) $m+n \equiv 0 \pmod 4$, (ii) $3n-m \equiv 0 \pmod 8$, (iii) $3m-n \equiv 0 \pmod 8$, (iv) $m \leq 3n$ and (v) $n \leq 3m$.

Corollary 1. $K_{n,n}$ has an S_4 -factor if and only if $n \equiv 0 \pmod{4}$.

3. S₄-factorization of K_{m, n}

Theorem 2. If $K_{m,n}$ has an S_4 -factorization, then $K_{m,en}$ has an S_4 -factorization for every positive integer s.

Notation 1. r,t,b: number of S_4 -factors, number of S_4 -components of each S_4 -factor, and total number of S_4 -components, respectively, in an S_4 -factorization of $K_{m,n}$.

 t_1 (t_2): number of components whose centers are in V_1 (V_2), respectively, among t S_4 -components of each S_4 -factor.

 $r_1(u)$ ($r_2(v)$): number of components whose centers are all u (v) for any u (v) in V_1 (V_2), respectively, among b S_4 -components.

Trivial necessary conditions (T-conditions). b=mn/3, t=(m+n)/4, r=4mn/3(m+n), t_1 =(3n-m)/8, t_2 =(3m-n)/8, t_1 =(3n-m)/6(m+n), t_2 =(3m-n)m/6(m+n), m \leq 3n and n \leq 3m.

Sufficient conditions. We consider the following three cases.

Case (1) m=3n: In this case, from Theorem 2, $K_{3n,n}$ has an S_4 -factorization since $K_{3,1}$ is just S_4 . Case (2) n=3m: Obviously, $K_{m,3m}$ has an S_4 -factorization.

Case (3) m(3n and n(3m: In this case, let x=(3n-m)/8 and y=(3m-n)/8. Then from T-conditions, x and y are integers such that 0 < x < m and 0 < y < n. We have x+3y=m and 3x+y=n. Hence it holds that $b = (x^2 + 3xy + y^2) + xy/3$, t = x + y, r = (x + y) + 4xy/3(x + y), $t_1 = x$, $t_2 = y$, $t_1 = x - 2xy/3(x + y)$ and $t_2 = y - 2xy/3(x + y)$. Let z = 2xy/3(x + y), which is a positive integer. And let (x,3y) = d, x = dp, 3y = dq, where (p,q) = 1. Then dq/3 is an integer and z = 2dnq/3(3n + q). Using these p.g.d. the parameters m and n

Then dq/3 is an integer and z=2dpq/3(3p+q). Using these p,q,d, the parameters m and n satisfying T-conditions are expressed as follows:

Lemma 1. (p,q)=1 and 2dpq/3(3p+q) is an integer

- ===> (I) m=3(p+q)(3p+q)s, n=(9p+q)(3p+q)s (3p+q:odd) or m=3(p+q)(3p+q)s'/2, n=(9p+q)(3p+q)s'/2 (3p+q:even) when q/3 is not an integer,
 - (II) m=3(p+3q')(p+q')s, n=3(3p+q')(p+q')s (p+q':odd) or m=3(p+3q')(p+q')s'/2, n=3(3p+q')(p+q')s'/2 (p+q':even) when q=3q' and q'/3 is not an integer,
 - (III) m=(p+9q'')(p+3q'')s, n=3(p+q'')(p+3q'')s (p+3q'':odd)
 - or m=(p+9q'')(p+3q'')s'/2, n=3(p+q'')(p+3q'')s'/2 (p+3q'':even) when q=9q'',

where s and s' are positive integers.

Notation 2. Let A and B be two sequences of the same size such as

A: a₁,a₂,...,a₁

B: b₁,b₂,...,b_u.

If $b_i=a_i+c$ (i=1,2,...,u), then we write B=A+c. If $b_i=((a_i+c) \mod w)$ (i=1,2,...,u), then we write B=A+c mod w, where the residuals a_i+c mod w are integers in the set {1,2,...,w}.

Lemma 2. (p,q)=1 and q/3 is not an integer

m=3(p+q)(3p+q)s, n=(9p+q)(3p+q)s, where s is a positive integer

===> K_{m, p} has an S₄-factorization.

Proof. When s=1, the proof is by construction (Algorithm I). Let x=(3n-m)/8, y=(3m-n)/8, t=(m+n)/4, r=4mn/3(m+n). Then we have x=3p(3p+q), y=q(3p+q), $t=(3p+q)^2$, r=(p+q)(9p+q). Let $r_m=p+q$, $r_p=9p+q$, $m_0=m/r_m=3(3p+q)$, $n_0=n/r_p=3p+q$. Consider two sequences R and C of the same size 9(3p+q).

R: 1,1,1,2,2,2,...,3(3p+q),3(3p+q),3(3p+q)

C: 1,2,...,9(3p+q)-1,9(3p+q).

Construct p sequences R_i such that $R_i=R+3(i-1)(3p+q)$ (i=1,2,...,p).

Construct p sequences C_i such that $C_i=(C+3(i-1) \mod 9(3p+q))+9(i-1)(3p+q)$ (i=1,2,...,p). Consider two sequences R' and C' of the same size 3(3p+q).

R': $r_1, r_2, ..., r_{3(3p+q)}$, where $r_i = (i-1)p+1 \mod 3(3p+q) (i=1,2,...,3(3p+q))$

C': $c_1, c_2, ..., c_{3(3p+q)}$, where $c_i = n - ((i-1)q \mod q(3p+q))$ (i=1,2,...,3(3p+q)).

Construct q sequences R_i ' such that R_i '=R'+3(i-1)(3p+q)+3p(3p+q) (i=1,2,...,q). Construct q sequences C_i ' such that C_i '=C'-(i-1) (i=1,2,...,q). Consider two sequences I and J of the same size.

I: R₁,R₂,...,R_p,R₁',R₂',...,R_q'

J: C₁,C₂,...,C_p,C₁',C₂',...,C_q'.

Then the size of I or J is 3t. Let i_k and j_k be the k-th element of I and J, respectively (k=1,2,...,3t). Join two vertices i_k in V_1 and j_k in V_2 with an edge (i_k,j_k) (k=1,2,...,3t). Construct a graph F with two vertex sets $\{i_k\}$ and $\{j_k\}$ and an edge set $\{(i_k,j_k)\}$. Then F is an S_4 -factor of $K_{m,n}$.

Construct r_m sequences I_t such that $I_t=I+(i-1)m_0 \mod m$ ($i=1,2,...,r_m$).

Construct r_n sequences J_j such that $J_j=J+(j-1)n_0 \mod n$ ($j=1,2,...,r_n$).

Construct $r_m r_n$ S_4 -factors F_{ij} with I_i and J_j (i=1,2,..., r_m ; j=1,2,..., r_n). Then it is easy to show that F_{ij} are edge-disjoint and that their sum is an S_4 -factorization of $K_{m,n}$. By Theorem 2, $K_{m,n}$ has an S_4 -factorization for every positive integer s.

Lemma 3. (p,q)=1 and q=3q' (q'/3 is not an integer)

m=3(p+3q')(p+q')s, n=3(3p+q')(p+q')s, where s is a positive integer

===> Km, n has an S4-factorization.

Lemma 4. (p,q)=1 and q=9q"

m=(p+9q")(p+3q")s, n=3(p+q")(p+3q")s, where s is a positive integer

===> K_{m, n} has an S₄-factorization.

REFERENCES

- 1. H. Enomoto, T. Miyamoto and K. Ushio, C_{κ} -factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- 2. K. Ushio, Pa-factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- 3. K. Ushio and R. Tsuruno, P_3 -factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385-387.
- 4. K. Ushio and R. Tsuruno, Cyclic S_k -factorization of complete bipartite graphs, to appear in "Proc. Second Inter. Conf. Graph Theory, 1989, San Francisco".