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The dynamic nature of high-speed networks poses difficult traffic control problems when
trying to achieve efficient use of network resources. One such problem is the issue of band-
width management allocation. Because of the statistical multiplexing of all connections and
the variation of connections bit rates, it is important to evaluate the equivalent capacity of
all connections. The purpose of the equivalent capacity is to provide a metric to represent
the effective bandwidth used by connections and the corresponding effective load on network
links. In order to cope with rapidly changing network conditions, traffic control methods for
high-speed networks must be adaptive, flexible, and intelligent for efficient network manage-
ment. Use of intelligent methods based on fuzzy logic, neural networks and genetic algorithms
can prove to be efficient for traffic control in high-speed networks. The equivalent capacity
estimation is a very important function for call admission control. To estimate the equivalent
capacity, fluid flow approximation, stationary approximation and equivalent capacity method
has been proposed. But, they make many approximations, which result in an overestimate
of equivalent capacity. In this paper, we propose a fuzzy equivalent capacity estimator for
bandwidth allocation in high-speed networks. Performance evaluation via simulations shows
that proposed fuzzy equivalent capacity estimator has a good equivalent capacity estimation
compared with fluid flow and stationary approximations. Furthermore, the combination of
fuzzy equivalent capacity estimator and stationary approximation give a better estimation
compared with Guérin’s method.

1. Introduction

In high-speed networks such as ATM net-
works, several classes of traffic streams with
widely varying traffic characteristics are statis-
tically multiplexed and share common switch-
ing and transmission resources. Because all
connections are statistically multiplexed at the
physical layer and the bit rate of connections
varies, a challenging problem is to estimate the
effective bandwidth requirement as a function
of Quality of Service (QoS). The basic objective
of a bandwidth management control strategy is
to allow for high utilization network resources,
while sustaining an acceptable QoS for all con-
nections.
The equivalent capacity estimation is a very

important function for Call Admission Control
(CAC). To estimate the equivalent capacity,
flow fluid and stationary approximations1) are
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proposed. But, they make many approxima-
tions, which result in an overestimate of equiv-
alent capacity. In order to deal with the prob-
lems of flow fluid and stationary approxima-
tions, Guérin, et al.1) proposed a method which
calculates the equivalent capacity as combina-
tion of fluid flow model and the approximation
of the stationary bit rate distribution. But,
also the Guérin’s method still overestimates the
actual bandwidth requirements. Also, these
methods suffer from some fundamental limita-
tions. Generally, it is difficult for a network to
acquire complete statistics of input traffic. As a
result, it is not easy to accurately determine the
effective bounds or equivalent capacity in a var-
ious bursty traffic flow conditions of high-speed
networks. In addition, another major challenge
is to provide the equivalent capacity estimation
in real-time, upon the arrival of a connection
request. This procedure must be computation-
ally simple enough so the overall complexity is
consistent with real time requirements.
The dynamic nature of high-speed networks

poses difficult traffic control problems when try-
ing to achieve efficient use of network resources.
To cope with rapidly changing network con-
ditions, traffic control methods for high-speed
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networks must be adaptive, flexible, and intel-
ligent for efficient network management. Use of
intelligent methods based on Fuzzy Logic (FL),
Neural Networks (NN) and Genetic Algorithms
(GA) can prove to be efficient for traffic con-
trol in high speed networks2)∼6). In Refs. 2), 3),
the FL is used to build fuzzy Policing Mecha-
nisms (PM), whose performance is better than
conventional PMs and very close to ideal be-
havior. In Ref. 4), a fuzzy controller for adap-
tive traffic in telephone networks is proposed.
A simplified inference method is derived which
attempts to represent gradual inference rules
using fuzzy control. The inference method is
based on heuristic rules derived from expert
knowledge and human experience. It is proved
that FL is an effective way to control the com-
plex systems such as telecommunication net-
works. Some NN applications for traffic control
in ATM networks are proposed in Ref. 5). The
NN are well suited to applications in the control
of communications networks due to their adapt-
ability and high speed. They can achieve an ef-
ficient adaptive control through the use of adap-
tive learning capabilities. A GA based routing
method is proposed in Ref. 6). The proposed
routing algorithm has a fast decision and shows
an adaptive behavior based on GA.
In this paper, we propose a Fuzzy Equivalent

Capacity Estimator (FECE) for bandwidth al-
location in high-speed networks7). The equiva-
lent capacity computation focuses on the band-
width requirement of the bit rate generated by
sources, and not on the different interactions
that take place within the network. Such in-
teractions are often too complex to even be ac-
curately described. Focusing directly on the bit
rate requirement of a source is reasonable in the
context of a high-speed network attempting to
provide a transparent service to sources. Our
proposed FECE can provide an equivalent ca-
pacity estimation close to the exact value and
the Fuzzy Rule Base (FRB) is simple (only 18
rules), which is practical for real-time network
traffic control applications.
The proposed fuzzy estimator is part of a

CAC scheme8) which is the subject of another
paper. Performance evaluation via simulations
shows that the FECE has a good equivalent ca-
pacity estimation compared with fluid flow and
stationary approximations. Furthermore, the
combination of FECE and stationary approxi-
mation give a better estimation compared with
Guérin’s method.

The organization of this paper is as follows.
In the next Section, we will introduce the previ-
ous work. The proposed FECE is presented in
Section 3. The simulation results are discussed
in Section 4. Some implementation issues are
treated in Section 5. Finally, our conclusions
are given in Section 6.

2. Previous Work

2.1 Fluid Flow Approximation
In the fluid flow approximation model, the

bit rate generated by a number of multiplexed
connections is represented as a continuous flow
of bits with intensity varying according to the
state of an underline continuous-time Markov
chain. This Markov chain is obtained from the
superposition of sources associated with each
connection. In order to determine the equiva-
lent capacity, it is necessary to obtain an ex-
pression giving the distribution of the buffer
contents and a function of the connections char-
acteristics and the service rate. This expres-
sion must then be inverted to determine the
value of the service rate, which ensures an over-
flow probability smaller than a given value ε
for the available buffer size. This value is the
equivalent capacity that should be allocated to
the connections. Although this method pro-
vides the necessary information to determine
the equivalent capacity, the associated com-
putational complexity is often not compatible
with the real-time requirements. This is be-
cause, even when the buffer content distribution
can be easily derived, the resulting expression
can not be easily inverted to yield the equivalent
capacity as a function of other known parame-
ters. Iterative numerical procedures must then
be used to determine the value of the equivalent
capacity.

2.2 Stationary Approximation
When the effect of statistical multiplexing is

the dominant factor, a base for an approxima-
tion can be obtained by studying the impact of
the assumption β ≈ 1. The parameter β value
depends on the mean burst period and the num-
ber of connections. The parameter β is signifi-
cantly different from 1 when a number of con-
nections with equivalent capacity much larger
than their mean bit rate are multiplexed. This
is essentially the case for connections with long
burst periods and relatively low utilization. It
should be noted that in the case of long burst
periods, the relation between buffer overflows
and packet losses may be inaccurate. Also, the
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asymptotic (large buffer) approximation itself
is likely to be inaccurate as well in the case of
large burst periods. This points to the limita-
tion of the fluid flow model and the assumption
β ≈ 1, in the case of many connections with
long burst periods.
When a number of connections with rela-

tively long burst periods are multiplexed, a rea-
sonably accurate estimate of the required band-
width can be obtained from stationary bit rate
distribution. The value of equivalent capacity
can be selected to ensure that the aggregate sta-
tionary bit rate exceeds the equivalent capacity
only with a probability smaller than the value ε
of desired buffer overflow probability. This en-
sures a buffer overflow probability below ε, but
if often a substantial overestimate of the actual
bandwidth required as it ignores the “smooth-
ing” effect of the buffer, i.e., the buffer allows
the input rate to exceed the output rate for a
short period.
In most of the cases where the effect of statis-

tical multiplexing is of significance, the distri-
bution of the stationary bit rate can be approx-
imated by Gaussian distribution. The Gaus-
sian distribution allows the use of standard ap-
proximations to estimate the tail of the bit rate
distribution. However, it should be noted that
some care must be exercised to avoid situations
where the Gaussian assumption does not hold.
This typically happens with small numbers of
very bursty connections with high peak rate,
low utilization, and long burst periods. In such
cases, the stationary approximation can yield a
lower capacity than actually required.

2.3 Equivalent Capacity
In order to deal with problems of fluid flow

and stationary approximations, Guérin, et al.
proposed the equivalent capacity method which
is a combination of fluid flow and stationary
approximations. This method calculates the
equivalent capacity as the minimum of fluid
flow approximation and stationary approxima-
tion. The fluid flow and stationary approxima-
tions are used because they complement each
other, capturing different aspects of the be-
havior of multiplexing connections. As both
fluid flow and stationary approximations over-
estimate the actual value of the equivalent ca-
pacity and are inaccurate for different ranges of
connections characteristics, the Guérin’s equiv-
alent capacity method also overestimates the
actual bandwidth requirements.

Fuzzifier
Inference
Engine

Fuzzy Rule
Base

Defuzzifier
OutputInput

Fig. 1 FLC structure.
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Fig. 2 Triangular and trapezoidal membership
functions.

3. Proposed Fuzzy Equivalent Capac-
ity Estimator

3.1 Fuzzy Membership Functions De-
sign

In Ref. 1), in order to get the Equivalent ca-
pacity (Ec) of N identical On-Off traffic sources
parameter β was approximated by one. But,
the assumption of β ≈ 1 ignores the effect
of statistical multiplexing. In order to gain
from statistical multiplexing of bursty connec-
tions and make a more accurate estimation of
equivalent capacity, we propose a FECE. The
Fuzzy Logic Controller (FLC) is the main part
of the FECE and its basic elements are shown in
Fig. 1. They are the fuzzifier, inference engine,
FRB and defuzzifier. As membership functions,
we use triangular and trapezoidal functions,
because they are suitable for real-time opera-
tion9). As shown in Fig. 2, the triangular and
trapezoidal functions are given as:

f(x;x0, a0, a1)

=




x−x0
a0

+ 1 for x0 − a0 < x ≤ x0
x0−x

a1
+ 1 for x0 < x ≤ x0 + a1

0 otherwise
g(x;x0, x1, a0, a1)

=




x−x0
a0

+ 1 for x0 − a0 < x ≤ x0

1 for x0 < x ≤ x1
x1−x

a1
+ 1 for x1 < x ≤ x1 + a1

0 otherwise

where x0 in f(.) is the center of triangular
function; x0(x1) in g(.) is the left (right) edge
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Fig. 3 FECE membership functions.

of trapezoidal function; and a0(a1) is the left
(right) width of the triangular or trapezoidal
function.
The FECE predicts the Ec required for a new

connection based on the traffic parameters Peak
rate (Pr), Source utilization (Su), and Peak bit-
rate duration (Pbd). The membership functions
for FECE are shown in Fig. 3. The term sets
of Pr, Su, and Pbd are defined respectively as:

T (Pr) = {Small,Medium,Large}
= {S,M,L};

T (Su) = {Low,High} = {Lo,Hi};
T (Pbd) = {Short,Medium,Long}

= {Sh,Me,Lg}.
Based on many simulations, we decided that

three membership functions are enough for Pr
linguistic parameter, two membership functions
are enough for Su linguistic parameter, and
three membership functions are enough for Pbd
linguistic parameter.
The set of the membership functions as-

sociated with terms in the term set of Pr,
T (Pr) = {S,M,L}, are denoted by M(Pr) =
{µS , µM , µL}, where µS , µM , µL are the mem-
bership functions for S, M, L, respectively.
They are given by:

µS(Pr) = g(log(Pr);Pr,min, Se, 0, Sw);
µM (Pr) = f(log(Pr);Mc,Mw0,Mw1);
µL(Pr) = g(log(Pr);Le, P r,max, Lw, 0).

The small letters e, c, w0 and w1 mean edge,
center, left width and right width, respectively.
M(Su) = {µLo, µHi} are the membership

functions for term set of Su. The membership
functions µLo, µHi are given by:

µLo(Su) = g(Su; 0, Loe, 0, Low);
µHi(Su) = g(Su;Hie, 1, Hiw, 0).

The membership functions for term set Pbd
are M(Pbd) = {µSh, µMe, µLg}, and µSh, µMe,
µLg are given by:

µSh(Pbd)
= g(log(Pbd);Pbd,min, She, 0, Shw);

µMe(Pbd)
= f(log(Pbd);Mec,Mew0,Mew1);

µLg(Pbd)
= g(log(Pbd);Lge, P bd,max, Lgw, 0).

The Ec for a connection should fall between
its Pr and Average bit rate (Abr). Based on
the number of input membership functions, we
divide the Ec range in six membership func-
tions. The term of Ec is defined as T (Ec) =
{E1, E2, E3, E4, E5, E6}.
The term set of the output membership func-

tions, are denoted by M(Ec). They are writ-
ten as {µE1, µE2, µE3, µE4, µE5, µE6}, and are
given by:

µE1(Ec) = f(log(Ec);E1c, 0, E1w1);
µE2(Ec) = f(log(Ec);E2c, E2w0, E2w1);
µE3(Ec) = f(log(Ec);E3c, E3w0, E3w1);
µE4(Ec) = f(log(Ec);E4c, E4w0, E4w1);
µE5(Ec) = f(log(Ec);E5c, E5w0, E5w1);
µE6(Ec) = f(log(Ec);E6c, E6w0, 0).

In order to accommodate a wide variety of
different traffic sources, we use for some mem-
bership functions a logarithmic function.

3.2 Fuzzy Rule Base and Its Tuning
The FRB is shown in Table 1. The FRB

forms a fuzzy set of dimensions |T (Pr)| ×
|T (Su)| × |T (Pbd)|, where |T (x)| is the num-
ber of terms on T (x). Therefore, the FRB has
18 rules. The control rules have the following
form: IF “conditions” THEN “control action”.
Statements on conditions go like “Pr is small”
or “Su is long”. Likewise, statements on control
action might be “Ec is E1”.
Because there are three input linguistic pa-
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Table 1 FRB.

Rule Pr Su Pbd Ec
0 S Lo Sh E1
1 S Lo Me E2
2 S Lo Lg E5
3 S Hi Sh E1
4 S Hi Me E1
5 S Hi Lg E4
6 M Lo Sh E1
7 M Lo Me E3
8 M Lo Lg E6
9 M Hi Sh E1
10 M Hi Me E2
11 M Hi Lg E5
12 L Lo Sh E4
13 L Lo Me E6
14 L Lo Lg E6
15 L Hi Sh E3
16 L Hi Me E5
17 L Hi Lg E6

rameters the maximal and minimal number of
the membership functions fired at a moment
of time is 6 and 3, respectively. To decide an
appropriate output membership function, the
strength of each rule must be considered. Also,
a trade-off between the evaluation accuracy and
the FRB complexity is needed. For this rea-
son, we selected three input linguistic parame-
ters and the parameter values of output mem-
bership functions are assigned as follows. The
value of E1c is set equal to Abr and the value
of E6c is set equal to Pr. The other values are
calculated based on the following equation:

Eic = E(i− 1)c + (Pr −Abr)/5 (1)

where i = 2, 3, 4, 5, 6.
Our policy for FRB tuning is to get an Ec es-

timation close to the exact value. The value of
Ec is proportional with Pr, Pbd, and (1− Su).
Let us see the meaning of rules in the FRB.
By way of illustration, Rule 0 in Table 1 has
to be read as: If (Pr is small) and (Su is low)
and (Pbd is short) then (Ec is E1). In Rules 0,
1, and 2, the Pr is small and Su is low, but the
Pbd changes as short, medium, and long. By in-
creasing the Pbd parameter the Ec is increased.
For this reason, the Ec for these rules is E1,
E2, and E3, respectively. In Rules 3, 4, and 5,
the Su becomes high. The Ec is proportional
with (1− Su). Therefore, the Ec increases fast
when Su is low, but increases slowly when Su
is high. This is why the Rules 3, 4, and 5 are
weaker compared with Rules 0, 1, and 2. The
tuning of the following rules is the same, but
in Rules 6, 7, 8, 9, 10, and 11, the Pr becomes
medium, therefore these rules are stronger than

rules when the Pr was small. When the Pr be-
comes large (Rules 12, 13, 14, 15, 16, and 17),
the strength of output membership functions
is increased more compared with membership
functions when Pr was medium.

4. Simulation Results

Considering a two-state Markov source the
expressions of Ec for exact value, fluid flow ap-
proximation and stationary approximation are
given as follows. Assuming a finite Buffer (B)
size, the equation satisfied by the Ec for an
overflow probability of ε is given by:

ε = β · exp
(
− B(Ec−Su · Pr)
Pbd(1−Su)(Pr − Ec)Ec

)

(2)

where,

β =
(Ec− Su · Pr) + ε · Su(Pr − Ec)

(1− Su)Ec .

(3)

If the parameter β is approximated by 1, the
Ec for a single connection is given by:

Êc ≈ α · Pbd(1− Su)Pr −B
2α · Pbd(1− Su)

+

√
[α · Pbd(1− Su)Pr −B]2

2α · Pbd(1− Su)

+

√
4Bα · Pbd · (1− Su)Pr
2α · Pbd(1− Su) (4)

where α = ln(1/ε).
For multiple connections, when the input bit

rate is characterized by a N-state Markov chain,
the distribution of the buffer contents is of the
following form:

F (B) =
N∑

i=1

aiΦie
ZiB (5)

where Zi and Φi are, respectively, generalized
eigenvalues and eigenvectors associated with
the solution of the differential equation satisfied
by the stationary probabilities of the system,
and ai are coefficients determined from bound-
ary conditions.
The exact value of the Ec for single and mul-

tiple connections are calculated by iteratively
solving Eqs. (3) and (5). But, this calculation,
although exact, is complicated and is not com-
patible with a dynamic and real-time environ-
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Table 2 Assignment of values for input and output
linguistic parameters.

Pr
Se = −3 Sw0 = 0 Sw1 = 1
Mc = −2 Mw0 = 1 Mw1 = 1
Le = −1 Lw0 = 1 Lw1 = 0

Su
Loe = 0.6 Low0 = 0 Low1 = 1
Hie = 0.75 Hiw0 = 0.15 Hiw1 = 0

Pbd
She = −3 Shw0 = 0 Shw1 = 1
Mec = −2 Mew0 = 1 Mew1 = 1
Lge = −1 Lgw0 = 1 Lgw1 = 0

Ec
E1c = −2 E1w0 = 0 E1w1 = 0.4

E2c = −1.6 E2w0 = 0.4 E2w1 = 0.4
E3c = −1.2 E3w0 = 0.4 E3w1 = 0.4
E4c = −0.8 E4w0 = 0.4 E4w1 = 0.4
E5c = −0.4 E5w0 = 0.4 E5w1 = 0.4

E6c = 0 E6w0 = 0.4 E6w1 = 0

ment.
The Ec for multiple connections using fluid

flow approximation is calculated by:

Êc(F ) =
N∑

i=1

Êci (6)

where Êci are determined from Eq. (4).
In fluid flow approximation, the parameter β

is considered 1. This approximation can do a
good evaluation in the case when either Number
(N) of connections is small of the actual total
Ec is close to overall Abr. In other cases, this
approximation results in an overestimate of Ec.
When N connections with relatively long

burst periods are multiplexed, a reasonably ac-
curate estimate of the required Ec can be ob-
tained from the stationary approximation. The
value of the Ec can be expressed as:

Êc(S) ≈ Abr + α̂σ (7)

where Abr is the average aggregate bit rate
(Abr =

∑N
i=1Abri); α̂ is

√−2ln(ε)− ln(2π),
and σ is the standard deviation of the aggre-
gate bit rate (σ2 =

∑N
i=1 σ

2
i ).

The stationary approximation gives a sub-
stantial overestimate of the Ec because it ig-
nores the effect of the buffer.
Considering the values of Pr,min = 10−6,

Pr,max = 1, Pbd,min = 10−9, Pbd,max =
100 s, and Abr = 10−2, their logarithmic values
will be Pr,min = −6, Pr,max = 0, Pbd,min =
−9, Pbd,max = 2, and Abr = −2, respec-
tively. Based on these values, the values for
input and output linguistic parameters are as-
signed as shown in Table 2.
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By using the same parameters for four meth-
ods: the normalized value of Pr = 6.6 × 10−3,
Pbd = 2 × 102, and the probability of over-
flow 10−5, the characteristic of the required Ec
versus Su for three different number of con-
nections N = 5, N = 50 and N = 90 are
shown in Figs. 4, 5, and 6 respectively. As
shown in these figures, the required Ec calcu-
lated by FECE is very close to the exact value.
For bursty traffic sources when the sources have
a low utilization, the flow approximation does
not have a good Ec accuracy. But, for traffic
sources with high source utilization, the flow
approximation does have a good Ec estimation.
On the other hand, the stationary approxima-
tion has a good Ec accuracy for low source uti-
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Fig. 7 Performance comparison between Guérin’s
method and proposed method.

lization and a poor estimation for high source
utilization. The characteristic of FECE is more
close to the exact value compared with both
flow and stationary estimations. However, for
sources with very low utilization, the station-
ary approximation gives a better accuracy than
FECE.
In order to get a better estimation of Ec,

Guérin calculated the Ec as the minimum value
of fluid flow approximation and stationary ap-
proximation. We also get a good Ec estimation
by calculating the Ec value as the minimum
value of FECE and stationary approximation.
The performance comparison between Guérin’s
method and our proposed method for N = 50 is

shown in Fig. 7. At the beginning, both meth-
ods have the same behavior, because they use
the stationary approximation, but as the source
utilization increases, our method makes a bet-
ter estimation than Guérin’s method. For Su
= 0.5, our method and the exact value are very
close. Otherwise, Guérin’s method has a differ-
ence of about one order of magnitude compared
with the exact value. For high source utiliza-
tion, Guérin’s method uses the flow approxima-
tion and the characteristic is approaching the
exact value. However, our method shows a bet-
ter performance even for high source utilization.

5. Implementation Issues

Many ultra-low cost fuzzy chips exist and are
recently proposed. We consider as a fuzzy chip
for implementation, the parallel architecture
proposed in Ref. 10). This processor has the
following characteristics: the hardware imple-
mentation of the processor comprises 4 Fuzzy
Processing Units (FPUs); the clock frequency
at which each processor operates is 60MHz;
the speed of this fuzzy chip is about 77000
Fuzzy Logic Inference Operations Per Second
(FLIOPS), if one FPU is operating.
In order to use the FECE for Ec estimation

in real-time, we should consider the time con-
straint which the incoming connections shoud
be processed. Let us consider two time con-
straints tc of about 12ms and 2.7µs. The tc is
the maximum time limit by which the FECE
has to infer the output. If we denote the pro-
cessing time of the FECE with tf , the value of
tf should be smaller than tc. Let express the
time constraint in terms of FLIOPS. The FECE
has to give a minimum performance of 1/tc, so
the performance required is 84 FLIOPS and 370
FLIOPS for 12ms and 2.7µs, respectively. The
fuzzy processor has a speed of 77000 FLIOPS,
thus, the FECE is capable of calculating the Ec
of thousand and few hundred of connections for
12ms and 2.7µs, respectively. This results in
an improvement of the exploitation of hardware
when the fuzzy processor is used to estimate the
Ec of many connections in time sharing.

6. Conclusions

In this paper, we proposed a FECE for band-
width allocation in high-speed networks. The
behavior of FECE was investigated by simula-
tions. From the simulations results, we con-
clude:
• the fluid flow approximation has a good
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Ec estimation for traffic sources with high
source utilization, but a poor estimation for
bursty traffic sources when the sources have
a low utilization;

• the stationary approximation has a good
Ec accuracy for low source utilization and a
poor estimation for high source utilization;

• the characteristic of FECE is more close to
exact value compared with both fluid flow
and stationary estimations;

• for sources with very low utilization, the
stationary approximation give a good ac-
curacy than FECE;

• combination of FECE and stationary ap-
proximation gives a more accurate estima-
tion of Ec than Guérin’s method;

• the FECE can be used for real time esti-
mation of Ec and an improvement of the
exploitation of hardware can be achieved
when the fuzzy processor is used to esti-
mate the Ec of many connections in time
sharing.

The authors are working toward a CAC
scheme which is based on FL and will use the
proposed FECE as a cooperative agent to eval-
uate the Ec.
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