996

THHRA A 240 CE R 2 SFai) EE R

Join Strategies on Grid-Files

(J—6

Lilian Harada, Masaru Kitsuregawa, Mikio Takagi

University of Tokyo

1. Introduction

Recently, many research on multi-attribute clustered
relations have been done . The multi-attribute clustering
technique is the one which divides the relation into several
pages according to the value of not only the primary-key
attribute. It treates all attributes symmetrically. In a previ-
ous publication [1], we have introduced join strategies on
KD-tree indexed relations. In this paper we present join
strategies on Grid-files (Grid-join algorithms) showing that
the I/O cost is reduced to the minimum.

2. Grid-Files
Let R be a relation having k attributes A}, Ay, ...
composed of tuples t = (a;, ay, ..., a)-

D is the base space of relation R and denotes the
Cartesian product of the domains of attributes referred to by
the relation, i.e.,

k k
D =[] dom(4;) = [1 [MIN;, MAX,).
i=1 i=1

The relation is partitioned in pages, which are the unit
of access of the relation. The pages are disjoint sets of
actual tuples of the relation. Let relation R be partitioned
in IRl pages P;, j = 1, ..., IRI. The space p; of each page P;

k

is given by pj=qlaij,ﬁij) (o < Byj» 0 By €

[MIN;, MAX,) for all i). In the Grid-file, the insertion of
tuples causes the partitioning of the base space D at pre-
fixed values, generating grid subspaces. The assignment of
grid subspaces of the base space of the relation to the data
pages P; is the task of the grid directory. A grid directory
consists of two parts : first, a dynamic k-dimensional array
called grid array; its elements (pointers to data pages P;)
are in one-to-one correspondence with the grid subspaces of
the partition; and second, k& one-dimensional arrays called
linear scales; each scale defines a partition of a domain of
the relation.

s Ax

3. Cluster, Wave and Join Range

Consider a range [y, &),
Xi, & € [MIN; MAX;). We define
(Cyy,, 5, ) as the space given by :
[MIN  MAX ) X -+ X[ 8) % -« X [MIN, MAX,).
Thus the cluster of a range [y;, ;) of an attribute A;
represents the subspace of the relation whose tuples have
the attribute value q; in this range. Fig. 1(a) shows an
example for a 2-attribute Grid-file where dom(4,) = [0,8)
and dom(A,) = [0,8), illustrating a cluster of [2,4) for attri-
bute A;.

Now we define wave of [x:, &) (Wy, 5,) as the set
of pages which contains the cluster Cy,, 5, i-e.,

(P; 1p; A Cg,. 5y * & for j = L., RI}.

where y; <9; and
cluster of [N, ;)

A

V

S
N
o

]

N

o0 N

4 C[2'4) A2
- |

02 4 8 A 0 2 4
Fig. 1 (a) Cluster (b) Wave

Thus the wave of a range [x;, ;) of an atribute A,
represents the set of pages which can actually contain
tuples with the value of attribute A; in this range. Fig. 1(b)
shows the example of wave of [2,4) for attribute A,.

The wave represents the physical pages that are
accessed. The cluster represents a logical space of these
pages, which contains the tuples to be actually processed.
Both concepts of cluster and wave are based on a given
range of the attribute A;. We call this range as join range.

.

8 A

4. Join Processing on Grid-files

In the join of relations R and S, for a given join range,
the waves on this range are loaded from the secondary
storage to the main memory, and the processing of the clus-
ters on this join range are executed. Fig. 2 shows an exam-
ple of the join ranges, clusters and waves for relations R
and S with attributes A; and A,. Let suppose the join on
attribute A;. After loading the first wave of relations R and
S on the memory, the join is applied to the tuples of cluster
on [0,2). Then, the next waves of both relations are loaded
in the memory and the computing of the cluster on the join
range [2,4) is executed. This procedure is repeated until
the computing on all the domain of A, is finished. The join
range determines the pages of the relations to be loaded in
the memory and to be processed in each step. Thus, the
determination of the join range is fundamental for this join
strategy on Grid-files.

step 1 step 2 step 3
4  Wavey 'y Wave , IS Wave 4
] 20 8 y 8
Relation% é
R
024 8 024 8 024 8
£ g § iomTanges ) Join rangey
88? 8 8 :
Relation%ﬁ <]
S Z %
/] . . .
0 246 8 02468 0246 8

Fig. 2 Join Processing on Grid-Files



997

5. Basic Grid-Join Algorithm

Here we consider the join of two Grid-files R and S
with IRl and ISI pages, respectively, such that IRI < ISI. The
available memory size is IMI pages such that IMI << IRI

5.1. Description

In the basic Grid-join algorithm, the join range is
taken from the smaller relation R and is determined by con-
secutive elements of the linear scale of the attribute A;
being joined. Thus, for example, if the linear scale of A; of
relation R is given by X(0,1,...,nx), the join range of step ¢
is given by:

[X(t-1), X(t)),, such that X(t-1), = X(t-1)(_y, for

t=1,..,nx.

The idea of this basic Grid-join algorithm is to load the
smallest wave of relation R in memory, and to reserve all
the remaining memory space to load the correspondent
wave of relation S. The example in Fig. 2 shows the join
ranges when the linear scale of relation R is given by
X(0,2,4,8).

5.2. Performance Evaluation

Fig. 3 shows the number of page accesses for the
basic Grid-join algorithm, varying the main memory size in
pages. These simulation results are for Grid-files R and S
which are clustered on 2 attributes, have 64 Ktuples and
random data distribution. The page size is 16 tuples. We
can observe that for large memory size, the number of page
accesses is the minimum, that is, one scan for each relation.
Decreasing the memory size, the curve increases linearly.
For a given join range, if the wave of relation R can be
entirely loaded in the memory, the number of I/O page
accesses of relation S is proportional to the remaining
memory size. When the memory size is more reduced, the
curve abruptly increases. It is because even the wave of
relation R can not entirely fit into the memory, and so, the
waves of both relations are read from secondary storage
and processed in a nested-loop way.

6. Extended Grid-Join Algorithm

6.1. Description

Here we introduce a garbage collection mechanism
which discards the unnecessary tuples as soon as possible.
We introduce the garbage collection mechanism in the basic
Grid-join algorithm, increasing the effective memory space
used for relation S. As exemplified in Fig. 4, with this
dynamic garbage collection mechanism, after processing the
join range in the first step, the effective memory space for
the second join step is enlarged if the dotted portion is dis-
carded as garbage and only the dashed portion is main-
tained in the memory.

6.2. Performance Evaluation

Fig. 3 also shows the number of page accesses for the
extended Grid-join algorithm. As shown, the introduction
of the garbage collection mechanism increases the effective
memory space so that the number of I/O page accesses is
reduced to one scan of each relation in almost all the range

22000

20000

18000 1
& basic

16000 ~*- extended

14000 A

number of page accesses

one scan for

12000 - §
each relation

10000 T —T" T
64 80 96 112 128
memory size (pages)

Fig. 3 Simulation Results

Relation S

»

0 24 6 8 A
Fig. 4 Garbage Collection Mechanism

of variation of the memory size, which is the lowest I/O
bound.

7. Conclusion

In a previous paper we have shown the efficiency of
the join processing on KD-indexed relations, using our con-
cepts of cluster, wave and join range. In this paper we
showed that with the extended Grid-join algorithm, the
space of the wave to be processed in each step was always
on memory and thus the join could be processed with the
lowest 1/O bound of one scan per relation.

The selection of a multi-attribute clustering method by
the user is application dependent and it is a database design
problem. However, the concepts of cluster, wave and join
range are general to allow the efficient processing of join
queries for all the multiple attributes used for the relation
clustering, whichever clustering method is chosen.

[References]

[1] M Kitsuregawa, L.Harada, M.Takagi,"Join Strategies
on KD-Tree Indexed Relations", Proc. of the 5th.
Int. Conf. on Data Engineering, pp.85-93, 1989



