Conservativity of Typed Lambda Calculus over Intuitionistic Logic

1 J - 2

Ken-etsu FUJITA, Atsushi TOGASHI, Shoichi NOGUCHI

Research Institute of Electrical Communication, Tohoku University

1. Introduction

We investigate the conservativity of typed λ -calculi placed in λ -cube [1] (figure-1) over intuitionistic logical systems:

Some of typed λ -calculi in λ -cube are well-known as shown in the following table (table-2):

λL	already existing system
$\lambda \rightarrow$	typed λ-calculus (Church)
λ2	F (Girard) 2nd-order/polymorphic typed λ-calculus (Reynolds)
λP	AUT-QE (De Bruijn) LF (Harper, Honsell and Plotkin)
λK2	$F_{\omega}(Girard)$
λPK2	Calculus of constructions (Coquand et Huet)

table-2

It is already proved that using formulae-as-types notion [2], the interpretations from typed λ -calculi in λ -cube to intuitionistic logical systems are sound as depicted in the following table (table-3) [3].

Firstly we summarize already obtained results about the conservativity in 2. Secondly, in order to solve the open problem that $\lambda P2$ is conservative over PRED2 (denoted 2nd-order int. predicate logic) or not, for a first trial, we will prove the reduced problem that $\lambda P2^-$ is conservative over PRED2' (denoted PRED2 with $(*_t, *_t)$) in 3.

L (logic)	λL
Minimal propositional logic	λ>
Second. order int. prop. logic	λ2
Min. many sorted pred. logic	λP
Weak higher order minimal propositional logic	λ <i>K</i>
Second order intuitionistic manys. predicate logic	λP2
Higher order int. prop. logic	λK2
Weak higher order minimal many sorted predicate	λPK
Higher order intuitionistic many sorted predicate logic	λΡΚ2

table-3

2. Already obtained results about conservativity

2-1. Type systems on the left plane are conservative over the propositional logics

The type systems on the left plane in λ -cube are clearly conservative over the corresponding propositional logics. Using the restriction of [6], the restricted type systems for logics are same as the original type systems in the sense that $*=*_p$.

2-2. λP is conservative over PRED

[4] proved it using the translation from λP to PRED, which consists of the projection from λP to $\lambda \rightarrow$ (eliminating dependent types) and the relativization of quantifiers.

2-3. λ PK2 is not conservative over higher order logic

[5] proved it as follows (0 is a sort, ϕ is a formula in which x does not occur free and P is a predicate): Even though $\forall x: 0. \phi \rightarrow (\phi \rightarrow \phi)$, we can't find a proof of $P(\forall x: 0. \phi) \rightarrow P(\phi \rightarrow \phi)$, because of non-extensionality of logic. In $\lambda PK2$, on the other hand, let $\Gamma = 0: *, c: 0, P: * \rightarrow *, \phi: *$ (* means the collection of all types), then it has a following proci:

 $\Gamma \vdash \lambda z: P(\Pi x: 0. \phi).\lambda a: *.\lambda h: (\Pi \psi: *.P(\psi \rightarrow \phi) \rightarrow a). h0z$: $P(\Pi x: 0. \phi) \rightarrow \exists \psi: *.P(\psi \rightarrow \phi)$

The above proof is based on that the logic should be

non-extensional and that the translation (based on formulae-as-types) from higher order logic to $\lambda PK2$ allows us to identify formulae and sorts as types.

3. λP2 is conservative over PRED2'

3-1. λP2

 $\lambda P2^{-}$ has the same rules as $\lambda P2$, i.e., (*, *), (*, K), (K, *). The difference between them is as follows (x, X and Y are variables, c denotes a constant and y is a fresh variable):

Terms

 $M:=x|c|\lambda x:B.M|\lambda y:A.M|MM|\lambda X:K.M|MA$ Types or families

 $A::=X|\Pi x:B.A|\Pi y:A.A|\Pi X:K.A|\lambda x:B.A|AM$ $B::=Y|\Pi x:B.B|\lambda x:B.B|BM$

Kinds

 $K:=*|\Pi x:B.K$

That is, in the expressions $\lambda x:A_1.A_2$, $\Pi x:A_1.A_2$ and $\Pi x:A_1.K$, A_1 can't take a universal type $\Pi X:K.A$, i.e., only take B which excludes universal types.

3-2. PRED2' (denoted PRED2 with $(*_t, *_t)$)

PRED2' is obtained by adding to PRED2 higher order functions and predicates over function spaces. Sorts are formed by A (ground sort) and Ω (sort for formulae) as follows:

Sorts

S::=St|Sp

 $St::=A|St\rightarrow St$ $Sp::=\Omega|St\rightarrow Sp$

SORT is the set of sorts. Terms are constructed by x (variable) and c (constant) as below:

Torms

 $t::=x|c|t(t)|\lambda x.t|t\supset t|\forall x\in S.t$

For each term t, a sort [t] ∈ SORT is assigned where []:TERM→SORT. TERM denotes the set of terms. Constructors are defined as terms t such that [t] ∈ SORT-p. R denotes x where [x] ∈ SORT-p.

Constructors

 $C := R|Ct|\lambda x.C|C \supset C|\forall x \in S.C$

CONSTR denotes the set of constructors.

3-3. Translations Tr and || from λP2 to PRED2'

Tr applying to K or A gives a sort Sp or a constructor, and $| \ |$ applying to K, B or M gives SORT-t, a sort St or a term as follows:

SURI-t, a sor	t or or a	term as ioilows:
λ <i>P2</i> -	\Rightarrow	PRED2'
Type A		Constructor
X		R
Пх:В.А		$\forall \mathbf{x} \in \mathbf{B} .Tr(\mathbf{A})$
Пу:А1.А	12	$Tr(A_1) \supset Tr(A_2)$
ПХ:К.А	_	$\forall x \in Tr(K).Tr(A)$
λx:B.A		$\lambda x.Tr(A)$ where $[x]= B $
\mathbf{AM}		Tr(A)(M)
Kind Sort Sp		
*		Ω
Пх:В.К		$ \mathbf{B} \rightarrow Tr(\mathbf{K})$
where is defi	ned as	follows:

Type B	Sort St
Y	A
$\Pi x: B_1.B_2$	$ B_1 \rightarrow B_2 $
$\lambda x: B_1.B_2$	$ \mathbf{B_2} $
BM	B
Kind	
*	SORT-t
Пх:В.К	K
Term M where M:B	
x	x
c	c
$\lambda x:B.M$	$\lambda x. M $ where $[x]= B $
M_1M_2	$ \mathbf{M}_1 (\mathbf{M}_2)$
Proposition 1:	
TOTAL MODAL	. riskria - Irol

If $\Gamma \vdash_{\lambda P2}$. M:B, then [|M|] = |B|.

Proposition 2:

If $\Gamma \vdash_{\Lambda P2}$ A:K, then $[Tr(A)] = \dot{T}r(K)$.

An assumption $Tr(\Gamma)$ is defined as $\{ Tr(A) \mid z: A \in \Gamma \text{ for some } z \text{ (x or c) and A such that } \Gamma \vdash A:* \}.$

Proposition 3:

If $\Gamma \vdash_{\lambda P2^{-}} M:A:*$ for some M, then $Tr(\Gamma) \vdash_{PRED2^{*}} Tr(A)$.

[PROOF] By induction on a derivation $\Gamma \vdash_{\lambda P2}$. M:A and on M.

The translation * from PRED2' to $\lambda P2^-$ is defined by the notion of formulae-as-types [2], i.e., if ϕ is a formula ($[\phi] = \Omega$), then ϕ^+ :*.

Proposition 4:

If $C \in CONSTR$, then $Tr(C^+) = C$.

Theorem 1:

If $\Gamma \vdash_{\lambda P2}$. M: ϕ^+ for some M, then $Tr(\Gamma) \vdash_{PRED2}, \phi$.

Remark If we had allowed the term MB (we had only MA) in $\lambda P2^-$, then the proof of Theorem 1 would fail in Proposition 3.

4. Concluding remarks

In order to solve the open problem that $\lambda P2$ is conservative over PRED2 or not, for a first trial, we have proved Theorem 1 that $\lambda P2^-$ is conservative over PRED2'.

References

[1] Barendregt, H.: Introduction to Generalised Type Systems. Proceedings of the 3rd Italian Conference on Theoretical Computer Science, November, 1989.

[2] Howard, W. A.: The Formulae-as-types Notion of Construction. Academic Press, 1980 pp.479-490.

[3] Geuvers, H. and Barendregt, H.: The Interpretation of Logics in Type Systems. Department of Computer Science, University of Nijmegen, The Netherlands, August 1988.

[4] Barendsen, E. and Geuvers, H.: Conservativity of λP over PRED. University of Nijmegen, 1989.

[5] Geuvers, H.: Theory of construction is not conservative over higher order logic. University of Nijmegen, 1989.

[6] Fujita, K., Togashi, A. and Noguchi, S.: Relationship between logic and type system. 6th Conference Proceedings Japan Society for Software Science and Technology, 1989.

JUNET: fujiken@riec.tohoku.ac.jp