SIS 4% OECERE 2 £8R) 2 E X2 867

INTEGRATION OF DATABASE SYSTEMS
AT THE NAVIGATIONAL LEVEL BY USING PROLOG

6H—7

Motoshi KATSUMATA and Makoto TAKIZAWA

Tokyo Denki University

1. INTRODUCTION

In the distributed database system, views in-
dependent of heterogeneity of database systems
have to be provided. We adopt a Prolog-like
system as the common interface on the database
systems. Although many researchers have tried
to integrate multiple database systems at the
higher level like the relational model, we try
to integrate them at the lower, navigational
level, In this paper, we try to get an effi-
cient access program from the non-procedural
Prolog-like query on the navigational database
systems like the conventional network database
systems, UNIX file systems, and even rela-
tional database systems. Our method aims at
reducing not only the number of access units
but also the number of redundant answers.
Also, the access program is tried to be ex-
ecuted in parallel.

2. DISTRIBUTED NAVIGATIONAL DATABASE SYSTEM
The navigational database is a set of naviga—
tional objects. The navigational object 0 is
composed of a totally ordered set 0Dy of in-
stances and a collection Py of operations on
ODg. Distributed navigational database system
is composed of more than one navigational
database system. For example, a navigational
database system is composed of three naviga-
tional database systems DB,, DBz, and DBs.

DB:: s(@s, sname) DBz: p(@8p, pname)
DBs: sp(@sp,8p,8s), pb(apb,ab,dp),
bp(&bp, @b, 8p), b(@b, role)
Fig.2.1 Distributed Navigational Database

A view is defined on the distributed naviga-
tional database like this.

ssp (SNAM, PNAM) : - s(S,SNAM) ,sp(P,S),p(P,PNAM) .
The view ssp means that a supplier SNAM sup-
plies parts PNAM. A query "find parts supplied
by a supplier a” is written like this.

query (PN) :- ssp(”a”, PN).

Here, PN is a target variable and "a” is a
constant.

3. NAVIGATIONAL PROGRAM

Now, we try to translate a simple query to a
navigational program which accessés the
database.

INTEGRATION OF DATABASE SYSTEMS

AT THE NAVIGATIONAL LEVEL BY USING PROLOG
Motoshi KATSUMATA, Makoto TAKIZAWA

Tokyo Denki University

3.1 NAVIGATIONAL TREE

We introduce a navigational tree for a query
Q=query(X):-B;,...,Br. Now the query @ is writ-
ten in a set {Bi,...,Bn}.

[Definition] A navigational tree T = (V,B) for
a query @ is defined as follows.

(1) V is a set of nodes, For each atom B in @,
there exists a node Ng=<B, 8 s, 6 »>, where 8 3
and 6 e are substitutions.

(2) B is a set of branches Ny>N., where Ny=<P,
8. 0> is a parent of N=<C, 8¢, 6 >. Here, 0.
=g o and o . is a substitution which instan-
tiates €6 .. [

For a query @, a navigational tree T is con-
structed by the procedure SP[TAKI8T]. A tree
in Fig.3.1 is an example of a navigational

tree for a query @l=query(Y,PP) :- p(P,Y),
pb(B,P), p(PP,X), b(B), bp(B,PP).
—————— +
STOTR
_________________ +
@B E, bR P 4 5(0)

________ +7

Bo=¢ 81260{3/03} 02101{P/CP}
0s= 0ofPP/cer} 8 a= 83 {X/cx}

Fig.3.1 Navigational Tree

3.2 REDUCTION OF REDUNDANT ANSWERS

Next, we try to get all the answer substitu-
tions without redundant refutations. Here, let
T be a navigational tree. X is a some nodes in
T. Let parent(X) be X’s parent in T. For a
node A in T, suppose that there are n nodes
Bi,...,Br where A = parent(By) for j=1,...,n.
Let T, be a subtree of B;,. Suppose that a sub-
stitution 8+ is obtained by the resolution of
A. Let Ans(B,) be a set of refutations obtained
from T;8 4. In the Prolog program, for each A@
a, a cartesian product CAs= Ans(B:) x...x
Ans(B,) is obtained. Here, let Tw be a subtree
which includes targets in T.,...,T. (k=1,...,p,
p<n). In our method, only a projection of CAa
on Thi,...,The, i.e. AAp= Ans(Bm) x...x Ans(Bn)
is accessed. Since it is clear that |CAal >
{AAal, we can get all the answer substitutions
in less accesses to the database than the
Prolog program. Here, we present the naviga-
tional program in a network of objects where
the objects are nodes in T and two special ob-
jects ST and OUT, ST is a start node, OUT node
outputs the answer., Fig.3.2 shows an naviga-
tional program for Q1.




868

[Proposition] For a given navigational tree T,
less instances are accessed and less redundant
answers are obtained by the navigational
program than the Prolog one.l

—aan(m) PP B e, Ibp(B, ] L
IS_T]FSE”’(B)WE R[S, VIS, PRy SE] 0[St
3

*
3

-y
(g

L~

<O

L

Ty
Lyn
5

= 3
o

S

=

=

g

3
¥ %

Fig.3.2 Nav:gﬁtional Program

e 2.2, 2.2 2.2

=

4. NAVIGATIONAL PROGRAM FOR MULTIPLE INPUT
RULES
Let us consider the following query.
query(T,U) :- A(X,Y), B(X,T), C(T), V(Y,U),.
vV(P,q) :- D(P,Q,7Z), E(Z).
V(P,Q) :- F(P,V,Z), G(V,Q), H(Z).
The views in the query are replaced by the
right hand side of the views. For example, the
following two queries are obtained.
queryl(T,U) :- A(X,Y), B(X,T), C(T),

D(Y,U,Z), E(Z).
- ACX,Y), B(X,T), C(T),

F(Y,V,Z), G(V,U0), H(Z).
One method to get the answers of query is to
take the union of two results obtained by
queryl and query2. However, in both queries,
A, B, C are commonly evaluated. We try to
reduce this redundant processing by introduc-
ing a new BR(branch) node 0. When constructing
a navigational program for a given query, if a
rule atom A is selected for some parent node
P, an BR node is created as a child of P,
Navigational tree for a given query is shown
in Fig.4.1.

query2(T,U)

A(T,Y)

4

B(X'T |
|
e dLULD ——FOY,D)
BB ey H[Z)

4t

Fig.4.1 Navigational tree with BR node O

By our method, A,B,C are evaluated only once
in Fig.4.1, Thus, redundant evaluations can be
prevented.

5. OR PARALLELISM

Next, we try to execute concurrently a program
for a navigational tree as shown in Fig.4.1.
One method to get the answers of query is to
execute two subtrees of 0 in parallel and take
the union of two results obtained by them. So
we introduce an object named OR for control-
ling this case to the navigational progranm.
When constructing a navigational program for a
given query, if a rule atom A is selected for
some parent node P, an OR node is created as a
child of P. By introdusing a new OR node in
Figd.1, node D,E and F,G,H are executed in

parallel. There are two kinds of OR objects.
i.e. all-wait(AW0) and one-wait (OWQ) OR ob-
jects. Suppose that the subtrees at the right
hand side of an OR node 0 do not include any
target node. 1f one of the subtree S; is found
to success, we do not have to wait for the
completion of all the other subtrees at the OR
node 0. This type of OR node is named a OWO
node. On the other hand, let us consider that
the subtrees of the OR node 0 include sonme
target node. It is clear that of some subtree
includes target node, all of the subtrees of O
includes target node, In this case, even if
all the answer substitutions are obtained from
one subtree of 0, we can’'t stop to wait for
the other subtrees. When all the refutations
for all the subtrees complete, we can back-
track to the ancestor node of 0. This type of
the OR node is named AW0O node.

6. IMPROVED OR PARALLELISM BY PREFETCHING
Using the AWO node, we can get all the answers
in subtrees including target node. Here, let
rtarg(A) be a target node B leftmost to
A in navigational tree. AWO node is waiting
for the message from all the subtrees T,
(j=1,...,n). Here, if we can get the next
answers of rtarg(Ts;) unless we wait for the
token from all Ty, it is much better from the
point of efficient processing. From this con-
siderations, we introduce the PAWO(Prefetch
AW0) node.

7. CONCLUDING REMARKS

In this paper, we have presented a Prolog-like
query language interface on the multiple
various navigational database systems like the
conventional network database systems and Unix
file systems. In our system, derivation of the
redundant answers are prevented by accessing
navigationally the database without making in-
termediate files. Also, we have shown the
method to realize the OR parallelism so as to
decrease the redundant answer substitutions.

REFERENCES

[TAKI87] Takizawa, M., et al,, "Logic Inter-
face System on Navigational Database System,”
Lecture Notes in Computer Science, Springer-
Verlag, No.264, 1987, pp.70-80.

{TAK189a] Takizawa, M. and Katsumata, M.,
"Access Procedure to Minimize Redundant
Refutations on the Network Database System,”
Lecture Notes in Artificial Intelligence,
Springer-Verlag, No.383, 1989, pp.156-171.
[TAKI89b] Takizawa, M. and Katsumata, M.,
"Prolog Interface System on Distributed
Navigational Database Systems,” A Working Con-
ference on Data and Knowledge Engineering,
1989.

[WARR]Warren, D. H. D., "Efficient Processing
of Interactive Relational Database Queries
Expressed in Logic,” Proc. of the VLDB, 1981,
pp.272-281.



