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Effects of Data Hiding on Remote Data Analysis

Kanta Matsuura†

When digital data are distributed over an open network, they do not always keep their
original bit-strings: for example, issues related to copyright protection may necessitate the
use of digitally watermarked images. When we want to use a watermarking system, there is a
requirement that the data be kept acceptable. Usually, the difference between the original data
and the watermarked data is evaluated by human recognition; for instance, if users cannot
notice the difference visually, the watermark is considered acceptable. We here suggest another
scenario: if the user is not a human being but a remote computer which analyzes the digital
data, the acceptance criteria might be different. This paper studies how data hiding affects
remote data analysis. Specifically, a design competition among remote computers is simulated.
The result suggests the importance of how the design problem is represented; smaller condition
numbers of the coefficient matrix provide better robustness of the competition when the
signal-to-noise ratio (SNR) is sufficiently high. This effect is demonstrated by means of a
phantom-experiment study.

1. Introduction

Once equipped with security mechanisms,
open networks can be used for a wider range
of applications. Let us imagine an application
in which digital data distributed over a net-
work do not keep their original bit-strings com-
pletely unchanged, as in the case of digitally
watermarked images1)∼4). In this example, the
difference between the original images and the
watermarked images is usually evaluated by hu-
man recognition; if the user does not notice the
difference by looking at the images, the water-
marking is considered acceptable, that is, the
images are regarded as being as good as the
original ones.

In different applications where not a human
user but a computer itself uses the digital data,
however, the evaluation criteria might be differ-
ent. For instance, we may watermark our own
measured data and then entrust the analysis of
the data to a remotely located third-party com-
puter (see Fig. 1). What if the watermarked
data give us results quite different from those
given by the original data? We may also water-
mark our own design criteria and then entrust
the specific design to a third party. What if
the watermarked criteria give us a solution that
is too different from the solution given by the
original criteria? In accordance with the appli-
cation, we should use an appropriate strategy
to evaluate the effects of watermarking or data
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hiding.
This paper studies the effects of data hiding

on remote data analysis. The basic procedures
are introduced in Section 2. Section 3 then de-
scribes a simulation using these procedures. In
Section 4, after discussing the implication of the

Fig. 1 Entrusting the analysis of remotely measured
and then watermarked data to third-party com-
puters.
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simulation results, we demonstrate what hap-
pens in an actual measurement and its analy-
sis. Finally, Section 5 offers some concluding
remarks.

2. Basic Procedures

2.1 Random Data Hiding
Let y = (y1, y2, · · · , yN )T be a set of measure-

ments or design criteria☆. Without referring
to a specific data-hiding algorithm, we consider
the following procedures:
( 1 ) Randomly choose a specified number of

measurements (yj1 , yj2 , · · · , yjn
)T .

( 2 ) The chosen measurements are disturbed
by white noise.

In the following, n/N is referred to as the den-
sity of this data hiding. Denoting the disturbed
data by ỹ, we define the signal-to-noise ratio
(SNR) as

SNR = 20 log
||y||

||ỹ − y|| . (1)

2.2 Generalized Inversion
Let us consider a system equation

Ax = y, (2)
where A = (ai,j) is a system coefficient ma-
trix and y is a given measurement. x =
(x1, x2, · · · , xM )T is a set of design parameters
to be used by a third-party computer. For sim-
plicity, we assume that A is full-ranked.

When the dimension of x is smaller than that
of y (i.e., M < N), the system equation (2)
cannot be completely satisfied. In other words,
the system is overdetermined. In this overde-
termined case, a generalized-inverse (or pseu-
doinverse) matrix

A+ ≡ (
AT A

)−1
AT (3)

of A is used to obtain a minimum square-error
estimate

x+ = A+y, (4)
where x+ is the solution of a minimum square-
error problem

||Ax − y|| → min . (5)
When M = N , the system equation (2) has a

unique solution x=A−1y. In other words, the
system is well determined. Depending on the
design constraint, however, the third party may
encounter an overdetermined problem even if
M = N ; if the client wants to reduce the num-
ber of parts, the number of non-zero param-
eters may be limited☆☆. Let us suppose that
only m (< M) parameters are allowed to be

☆ Transpose is represented by T .

non-zero. In this case, the third party would
search for the set of values (i1, i2, · · · , im) that
minimizes the error∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
A(i1,i2,···,im)




xi1

xi2
...

xim


 − y

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(6)

where the coefficient matrix in Eq. (6) is given
by

A(i1,i2,···,im) =



a1,i1 a1,i2 · · · a1,im

a2,i1 a2,i2 · · · a2,im

...
...

. . .
...

aN,i1 aN,i2 · · · aN,im


 . (7)

An exhaustive search could be described as fol-
lows:
( 1 ) Choose (i1, i2, · · · , im) and set the error

E = ∞.
( 2 ) Compute a minimum-square error solu-

tion for (i1, i2, · · · , im) as x+
(i1,i2,···,im)=

(0, 0, · · ·, 0, xi1 , 0, · · ·, 0, xi2 , 0, · · ·,
0, xim

, 0, · · ·, 0)T , where (xi1 , xi2 , · · ·,
xim

)T = A+
(i1,i2,···,im)y.

( 3 ) If
∣∣∣
∣∣∣Ax+

(i1,i2,···,im) − y
∣∣∣
∣∣∣ < E, then take

x+
(i1,i2,···,im) as a temporary solution and

set E=
∣∣∣
∣∣∣Ax+

(i1,i2,···,im) − y
∣∣∣
∣∣∣.

( 4 ) Change (i1, i2, · · · , im) and return to
Step (2).

It should be noted that the problem above is
not a simple parameter fitting. We must select
m (out of M) parameters which take non-zero
values so that the resultant square-error fitting
problem gives the “minimum of the minimum
errors” among all the possible selections; for
each selection (Step (1) or (4)), we solve the
square-error problem (Step (2)), and search for
the optimum selection (Step (3)). What the se-
lection really means depends on the application.
An example is given later in Section 4.2.

3. Effects of Data Hiding

3.1 Situation
In order to avoid disturbance by computa-

tional round-off error, a small-scale situation
M = N = 10 is considered. The coefficient
matrix A and the measurement vector y are
randomly generated. y is then watermarked to

☆☆ In the design of beamforming arrays, for example,
the number of arrays is reduced as the solution be-
comes more sparse5).
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Fig. 2 Design competition among remote servers. If
the winner is the same with and without the
watermark, the watermark is evaluated as ac-
ceptable in the sense that the competition is
robust enough. We repeat the illustrated pro-
cedure and see how often the watermark is ac-
cepted.

be ỹ with a density of 0.4. A client entrusts
the design to 10 third parties. These parties are
called servers in the following discussion. The
servers are allowed to select at most m = 3 non-
zero design parameters and search for a better
selection by the random search procedure de-
scribed in the previous section. Each random
search is iterated 10 times.
3.2 Evaluation Criterion
Among the results from all the servers, the

client finds the best one in terms of the square
error. The server which gives this minimum
error is called the winner. By definition, the
winner is the best in terms of the error for the
watermarked data ỹ. However, it is not guaran-
teed that the winner’s selection gives the min-
imum error for the original data y as well. If
this is guaranteed, we can use the watermarking
without affecting the competition.

Unfortunately, we cannot have such a guar-
antee in general. This in turn motivated us to
define an evaluation criterion as follows:
( 1 ) For the final parameter selection by each

server, the error not for the watermarked
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(b) cond(A) = 11.97

Fig. 3 Rate of acceptance vs. SNR. cond(A) repre-
sents the condition number of the system coef-
ficient matrix A.

data ỹ but for the original data y is com-
puted.

( 2 ) If the winner is still best in terms of this
error, the data-hiding is regarded as ac-
ceptable in terms of robustness.

This procedure is summarized in Fig. 2. After
repeating the procedure, we saw how often the
data hiding was accepted. This rate was de-
fined as the rate of acceptance and used as an
evaluation criterion.
3.3 Results
For each set of A and y, the simulation is

carried out K = 100 times. Let the number
of acceptances (= the number of times the data
hiding is accepted) be L. The rate of acceptance
L/K is then given as in Fig. 3. The simulation
was carried out by using two different system
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matrices whose condition numbers☆ were very
different; one was 1530.4 while the other was
11.97. Since we consider random matrices of
small size (10×10), we assume that the compu-
tation of condition numbers is precise enough
for the discussion in the next section.

4. Discussion

4.1 Implication
We first discuss the implications of the simu-

lation results.
In linear estimation theory, the condition

number of a system coefficient matrix is in
close relation to the robustness against errors6);
larger condition numbers cause larger distur-
bances or larger error distributions.

The results in Fig. 3 suggests that
(I) for high SNRs, a smaller condition number

is better
and that
(II) for low SNRs, a difference in condition

number has insignificant effects.
In the simulated situation, a threshold SNR be-
tween (I) and (II) is estimated to be around
18 dB.

The condition number depends on how the
design problem is represented. When data-
hiding algorithms are efficient enough to yield
SNRs much higher than the threshold, the par-
ticular representation of the problem is impor-
tant for reliable analysis.

Medical-image processing can be a good ap-
plication of data hiding because it introduces
privacy issues. For example, in a biomagnetic
imaging system, how to determine the active
positions in a human brain or heart is a funda-
mental problem7)∼9). In the competition sce-
nario considered in this paper, each component
of the vector y represents the magnetic flux
density measured by each magnetic sensor. Se-
lection from the components of the vector x cor-
responds to the estimation of the active points
in the human brain or heart. The system coef-
ficient matrix A depends on the arrangement of
the sensors, including the types of the detection
coils used☆☆. Our simulation results suggest
that the arrangement of the magnetic sensors

☆ The condition number of a matrix is defined as the
ratio of the largest to the smallest singular values
of the matrix. The actual value depends on the
definition of the norm. This paper uses the most
popular square norm in Euclidean space.

☆☆ For example, three-dimensional coils provide differ-
ent coefficients10)∼12).
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(a) Sensor arrangement (I)
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(b) Sensor arrangement (II)

Fig. 4 Magnetic-sensor distribution around a spheri-
cal phantom with a radius of 10.0 cm. Each
arrangement has 10 sensors. A dipole electrode
is located at (−0.11,−0.14, 5.10) [cm] and is di-
rected as indicated by the small circle and line
(φ).

could be optimized in terms of the robustness
against data-hiding.
4.2 Demonstration by Phantom Data
Next, we demonstrate the effect of better con-

dition numbers by using phantom-experiment
data measured around a saline-filled spherical
phantom with a radius of 10.0 cm. The phan-
tom simulated a human brain and was set up
in a magnetically shielded room. The phan-
tom had a dipole electrode inside. The elec-
trode simulated neural activity by a spiked
current or a current dipole☆☆☆. The resul-
tant magnetic signals (magnetic-flux density
bandpassed between 0.1 and 100 Hz) were se-
quentially recorded at N = 10 locations.
We used two different sensor arrangements,
shown in Fig. 4. The electrode was located at

☆☆☆ The dipole moment of a current dipole is defined as
I · δx [A·m], where I is its electric current and δx is
its length (typically very short).



2530 IPSJ Journal Oct. 2001

0 10 20 30 40
0

20

40

60

80

100
Condition  number = 4.11e10

SNR [dB]

R
at
e 
of
 a
cc
ep
ta
nc
e 
[%
]

(a) For sensor arrangement (I)
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(b) For sensor arrangement (II)

Fig. 5 Rate of acceptance vs. SNR for different sensor
arrangements. Sensor arrangement (II) gives
the smaller condition number and better ro-
bustness.

(−0.11,−0.14, 5.10) [cm] and the manual loca-
tion error was estimated to be below 0.2 cm.
The direction of the current dipole at the elec-
trode was (0.05, 0.99, 0.00). The two sensor
arrangements give different condition numbers
of the system coefficient matrix A; sensor ar-
rangement (I) gives cond(A) = 4.11 × 1010,
while sensor arrangement (II) gives cond(A) =
3.02 × 109.

Equally-spaced M = 10 grid points (0, 0, 0.5),
(0, 0, 1.5), · · · , (0, 0, 9.5) [cm] were set up along
the z axis in the upper hemisphere (z > 0) of
the phantom. The current-dipole moments (y-
component) at these grid points were the de-
sign parameters to be determined. We allow
two grid points to have non-zero moments and
want to find the couple of points adjacent to the
electrode: (0, 0, 4.5) and (0, 0, 5.5). This cor-
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Fig. 6 Contour map of the original magnetic field
measured by sensor arrangement (I).

responds to a simplified version of a problem
which asks us to find the active region along a
given sulcus in the brain.

The coefficient matrices for the two sensor ar-
rangements were computed by using the Biot-
Savart law. We then had a competition similar
to that in Section 3:
• The measurement was watermarked with a

density of 0.4 and sent to 10 servers.
• Each server replied after 10 iterations of the

random search.
• By changing the watermark 100 times, we

obtained the rate of acceptance defined in
Section 3.3.

For different SNRs, we obtained the rates of
acceptance shown in Fig. 5. Thus the sensor
arrangement with the smaller condition num-
ber (i.e., sensor arrangement (II)) gives better
robustness, which is consistent with the result
of the simulation.
4.3 Conventional Evaluation
Let us revisit the conventional idea of wa-

termark evaluation1)∼4): in the case of water-
marked images, if users do not notice the differ-
ence between the original image and the water-
marked image by looking at them, the water-
marking is regarded as acceptable. Examples
in the previous subsection can show how this
conventional evaluation does not work in the
case of remote-data analysis by computers.
Figure 6 shows a contour map of the orig-

inal magnetic flux density measured by sensor
arrangement (I). If it is watermarked, it can be
changed into Fig. 7. It can also be changed
into Fig. 8. The former has an SNR of 23.3 dB.
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Fig. 7 Contour map of the watermarked magnetic
field when the SNR is 23.3 dB.
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Fig. 8 Contour map of the watermarked magnetic
field when the SNR is 35.8 dB.

Although this is lower than the threshold SNR
found in Fig. 5 (a), conventional human recog-
nition may accept the watermarked image as
a good one. By contrast, the latter has an
SNR of 35.8 dB. Although this is higher than
the threshold SNR, human recognition may re-
ject the watermarked image. Thus the criterion
for remote-data analysis can be different from
the conventional one.

5. Concluding Remarks

The effects of data-hiding were analyzed in
the context of remote data analysis. Specif-
ically, a design commitment competition was
simulated. The result suggests the impor-
tance of the representation of a design prob-

lem; better-conditioned coefficient matrices
contribute to more robust competition if the
SNR is high enough. This finding was also sup-
ported by a hardware simulation using mag-
netic measurements around a spherical phan-
tom.

The purpose of this paper is (1) to point out a
new notion of acceptable data-hiding and (2) to
outline the basic characteristics of such a notion
by using a small problem which does not suf-
fer from computational round-off errors. More
quantitative analyses in the near future will in-
clude not only random setting of the problem
but also particular examples such as medical
image processing. This may contribute to an
optimization of the sensor arrays as suggested
by the demonstration.
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Editor’s Recommendation

This paper deals with digital watermarking
which is becoming to be very important top-
ics in the field of illegal copy protection. The
quality level of the research is high enough as
recommendation paper.
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