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A Method of Fault-tolerant All-to-All Personalized

Communication in Banyan Networks

Masashi Yaku† and Hiroshi Masuyama††

In this paper, all-to-all personalized communication for multistage interconnection networks,
in particular for banyan networks, is discussed. All-to-all personalized communication is one of
the most dense collective communication patterns and occurs in many important applications
for parallel computing. Since the communication time required for an all-to-all personalized
communication is quite costly, efficient communication schemes are important in order to
achieve a high performance. We developed a new tolerable scheme for a single non-critical
fault, then presented the upper bounds of required communication time due to the stages
with the faulty element.

1. Introduction

All-to-all personalized communication is one
of the most dense collective communication pat-
terns. Many schemes have been developed for
several parallel computing networks, such as
hypercube, mesh, and multistage interconnec-
tion networks 1)∼10).

Johnsson and Ho 1) proposed optimal all-to-
all personalized communication algorithms on
an n-node hypercube with O(n logn) and O(n)
time complexity for a one-port model and a
log n-port model, respectively. Typical all-to-
all personalized communication algorithms on
a two-dimensional mesh and torus have time
complexity O(n3/2), where n is the total num-
ber of nodes. Yang and Wang 11) have devel-
oped an all-to-all personalized communication
optimum algorithm for banyan networks, given
the time complexity O(n). These schemes have
aimed mainly at nonfaulty networks.

On the other hand, Park and Bose 12) pro-
posed a fault-tolerant all-to-all broadcasting al-
gorithm in a logn-dimensional hypercube with
up to �log n/2� faulty links (or faulty nodes),
however, it was not a personalized communi-
cation algorithm. There has not yet been any
developed fault-tolerant all-to-all personalized
communication algorithms for any faulty net-
work.

Multistage interconnection networks are a vi-
tal component of parallel computing systems,
and enable the computing elements to commu-
nicate among themselves. The performance of
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the system depends a great deal on the extent
of the interprocessor communication. The fail-
ure of a component can bring down the sys-
tem performance, unless sufficient fault toler-
ant schemes are provided. Any of the multi-
stage interconnection networks is referred to as
a banyan network. In this paper, we will focus
on a method of all-to-all personalized commu-
nication tolerable for faulty banyan networks,
and estimate the upper bound of required com-
munication time.

The rest of the paper is organized as follows.
Section 2 summarizes an all-to-all personal-
ized communication scheme in a fault-free case
based on Latin square and permutations. Sec-
tion 3 presents an all-to-all personalized com-
munication scheme in faulty cases introduced
from the above scheme. The conclusion follows
in Section 4.

2. All-to-All Personalized Communi-
cation in Fault-free Cases

In distributed and also shared memory sys-
tems, communication among the processors is
performed mainly via message passing. Since
the communication time may be quite expen-
sive compared to the computation time, effi-
cient communication schemes are extremely im-
portant to achieve a high performance in the
system. Johnsson and Ho 1) introduced four dif-
ferent communication primitives:
( 1 ) one-to-all broadcasting (or single node

broadcasting) in which a single node dis-
tributes common data to all other nodes,

( 2 ) one-to-all personalized communication
(or scattering) in which a single node
sends unique data to all other nodes,

( 3 ) all-to-all broadcasting (or multimode
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broadcasting) in which all nodes broad-
cast concurrently to all other nodes, and

( 4 ) all-to-all personalized communication (or
total exchange) where each and every
node sends unique data to every other
node.

The last communication primitive is one of
the most dense collective communication pat-
terns and occurs in many important applica-
tions for parallel computing. The remaining
three communication primitives can be viewed
as a special case of all-to-all personalized com-
munication. So, Y. Yang and J. Wang devel-
oped the last communication primitive algo-
rithm for a logn stage banyan network pre-
sented in Ref. 11). They also presented the
number of required cycles to be n, which is op-
timum. We will develop a method for faulty
networks and present the upper bound of the
number of required cycles.
A. Latin Square and Permutations

A Latin square is defined as an n× n Matrix
L

L =




a0,0 a0,1 · · · a0,n−1

a1,0 a1,1 · · · a1,n−1

...
...

. . .
...

an−1,0 an−1,1 · · · an−1,n−1




in which the entries ai,j ’s are numbers in
{0, 1, 2, · · · , n − 1} and no two entries in a row
(or a column) have the same value.

Let P = (p0, p1, p2, · · · , pn−1) be an ordered
sequence whose elements are elements in the
original ordered sequence T = (0, 1, 2, · · · , n −
1). A permutation is a conversion from T to
P. In other words, a permutation is a bijection
(one to one mapping) from S = {0, 1, 2, · · · , n−
1} to S. Permutation ρ which maps i to ai (that
is, ρ(i) = ai) is represented by

ρ =
( 0 1 2 · · · n− 1
a0 a1 a2 · · · an−1

)
where ai �= aj for i �= j. We refer to permuta-
tion ai = i for all i as an identity permutation
I. The reverse permutation of ρ is denoted as
ρ−1.

The banyan network considered in this sec-
tion is an n×n network composed of m = logn
stages of 2 × 2 switches as shown as an exam-
ple of n = 8 in Fig. 1. E12 means the 2-nd
switching element on the 1-st stage.

Let σi(0 ≤ i ≤ m − 1) denote the stage per-
mutation realized by a set of n/2 switches on
stage i, and τj(0 ≤ j ≤ m−2) denote the inter-
stage permutation realized by the set of inter-

Fig. 1 An 8× 8 banyan network composed of 2× 2
switches.

stage links between stages j and j + 1. Permu-
tations τ0 and τ1 for an 8 × 8 banyan network
are

τ0 =
( 0 1 2 3 4 5 6 7

0 2 1 3 4 6 5 7

)
,

τ1 =
( 0 1 2 3 4 5 6 7

0 4 2 6 1 5 3 7

)
.

In general, permutation τj can be expressed
also by the following 2 bits permute permuta-
tion Tj ;

Tj =
(

pm−1pm−2 · · ·pj+2pj+1pj · · ·p1 p0

pm−1pm−2 · · ·pj+2 p0 pj · · ·p1pj+1

)

where pm−1pm−2 · · · p1p0 is the binary represen-
tation of any element of {0, 1, · · · , n− 1}.

Clearly, a one-to-one mapping from the net-
work inputs to the outputs is an admissible per-
mutation for the banyan network. An admissi-
ble permutation for a banyan network can be
expressed by a composition of m stage permu-
tations and (m − 1) interstage permutations.
The number of all admissible permutations for
a banyan network is given as (2n/2)m = nn/2

because of a total 2n/2 possible choices for each
nonfixed σi. In the next section, we will show
that Latin square L can be obtained by taking
either of the following 2 permutations I and σ
as σi for all i (This means only 2m of nn/2 ad-
missible permutations are used for realizing L,
and developing an all-to-all personalized com-
munication algorithm is based on a Latin square
whereby each row corresponds to an admissible
permutation of the banyan networks);

I =
(
0 1 2 3 · · · i i+ 1 · · · n− 2 n− 1
0 1 2 3 · · · i i+ 1 · · · n− 2 n− 1

)
,

σ =
(
0 1 2 3 · · · i i+ 1 · · · n− 2 n− 1
1 0 3 2 · · · i+ 1 i · · · n− 1 n− 2

)
,

i = any even integer.
Permutation σ can be expressed also by one bit
complement permutation Σ;

Σ =
(

pm−1pm−2 · · ·pj+2pj+1pj · · ·p1p0

pm−1pm−2 · · ·pj+2pj+1pj · · ·p1 p̄0

)
.
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B. Communication Algorithm
We will first define a product α · β of two

permutations α and β, as follows; product α ·
β is a permutation i → qi when α and β are
permutations i → pi and pi → qi, respectively.
For example,

α · β =
( 0 1 2 3 4

1 3 4 0 2

)
·
( 0 1 2 3 4

2 4 0 3 1

)

=
( 0 1 2 3 4

1 3 4 0 2

)
·
( 1 3 4 0 2

4 3 1 2 0

)

=
( 0 1 2 3 4

4 3 1 2 0

)

Product of permutations is not commutative,
that is, α · β �= β · α (α · β and β · α result in
different products). A Product of three or more
permutations can be obtained inductively from
a product of two permutations.

Based on a product of (2m−1) permutations,
we can construct Latin squares as described in
the following Algorithm A.

Algorithm A:
Make 2m different products of (2m − 1)
permutations as follows and insert each
of them into a different row of 2m × 2m

matrix L′;
σ0 ·τ0 ·σ1 ·τ1 ·σ2 ·τ2 · · ·σm−2 ·τm−2 ·σm−1

where σi(i = 0, 1, 2, · · · ,m− 1) is σ or I.
Since each row of L′ is driven by each different

product of (2m − 1) permutations, L′ doesn’t
have the same rows. Obviously, no two entries
have the same value in a row, and also no two
entries have the same value in a column. Then,
we are able to obtain the following property.

Property 1 Matrix L′ is a Latin square.
Example 1 L′ is obtained for an 8×8 ma-

trix as follows:
0 1 2 3 4 5 6 7

L′ =




0 2 4 6 1 3 5 7

1 3 5 7 0 2 4 6

4 6 0 2 5 7 1 3

5 7 1 3 4 6 0 2

2 0 6 4 3 1 7 5

3 1 7 5 2 0 6 4

6 4 2 0 7 5 3 1

7 5 3 1 6 4 2 0




← I ·τ0 ·I ·τ1 ·I
← I ·τ0 ·I ·τ1 ·σ
← I ·τ0 ·σ ·τ1 ·I
←I ·τ0 ·σ ·τ1 ·σ
← σ ·τ0 ·I ·τ1 ·I
←σ ·τ0 ·I ·τ1 ·σ
←σ ·τ0 ·σ ·τ1 ·I
←σ ·τ0 ·σ ·τ1 ·σ

Property 2 All-to-all personalized commu-
nication in a logn-stages banyan network can
be performed in n cycles.

Proof: It is obvious from the above discus-
sion.

In the following, we will treat only the matrix
L′ made in order of permutation products as

shown in the above example, as Latin square
driven from Algorithm A, that is,

L′ =




the 1−st row
the 2−nd row
the 3−rd row
the 4−th row

...
the (n− 1)−th row
the n−th row




←Γ0

←Γ1

←Γ2

←Γ3

...
←Γ(n−2)

←Γ(n−1)

Γ0=I ·τ0 ·I ·τ1 ·I· · ·τm−3 ·I ·τm−2 ·I
Γ1=I ·τ0 ·I ·τ1 ·I· · ·τm−3 ·I ·τm−2 ·σ
Γ2=I ·τ0 ·I ·τ1 ·I· · ·τm−3 ·σ ·τm−2 ·I
Γ3=I ·τ0 ·I ·τ1 ·I· · ·τm−3 ·σ ·τm−2 ·σ
...

Γ(n−2)=σ ·τ0 ·σ ·τ1 ·σ· · ·τm−3 ·σ ·τm−2 ·I
Γ(n−1)=σ ·τ0 ·σ ·τ1 ·σ· · ·τm−3 ·σ ·τm−2 ·σ

Let L′ divide into two n×n/2 matrices L′
0 and

L′
1, and further, L′

0 into two n × n/4 matrices
L′

00 and L′
01.

L′ = [L′
0|L′

1]
= [L′

00|L′
01|L′

1]

Let 4 6 0 2 5 7 1 3 of the 3-rd row of L′ in
Example 1 be called the entry sequence of the
3-rd row, then 1 3 5 7 is the entry sequence of
the 2-nd row of L′

0.
Though the following property is obvious by

reason of systematic and sequential products of
permutation in L′, in order to draw reader’s
attention to the property of L′, we will prepare
the following property.

Property 3 Two sets of entry sequences of
all L′

0 and L′
1 rows are the same. For the two

entry sequences L′
00(j) and L′

01(j) of the j-th
row of L′

00 and L′
01, respectively, the set of el-

ements which compose L′
00(j) is one of both

subsets of {0, 1, · · · , n/2 − 1} and {n/2, n/2 +
1, · · · , n−1}, and the set of elements which com-
pose L′

01(j) is the other.

3. All-to-All Personalized Communi-
cation in Faulty Cases

Banyan networks possess the property of full
access which means that data from any input
link can be transferred to any output link in
a single pass (we will use “cycle” in this sense)
through the network, where a unique path from
any input link of the network to any output
link is held. However, a problem on the min-
imization of delivery loss of the information
from an input link at the expense of routing
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overhead occurs when faults exist. Especially
when a banyan network is used for processor-
to-processor connection, the effect of the faults
on the system can be reduced by allowing mul-
tiple passes through the network. The network
is said to possess the dynamic full access (DFA)
capability if every processor in the system can
communicate with every other processor in a
finite number of cycles through the network,
routing the information through intermediate
PE’s if necessary 13). Fault-tolerance criterion
for banyan networks in this paper is presenting
the DFA capability.

The fault model we consider is one in which
only the switching elements fail because a faulty
link can be accommodated by treating it as a
faulty switching element. In addition, we don’t
consider critical faults by which the DFA capa-
bility is destroyed, and in this paper we treat a
single fault on inside stages.

Figure 2 shows a 16 × 16 banyan network
with faulty switching element E21 and the ma-
trix L′. In L′, for example, 2, 3, 10, and 11 in a
square written by solid lines in column 0 means
output links which have no path from input link
0 because of faulty switching element E21. All
other sequences written by solid lines mean out-
put links which have no path from each input
link assigned by the column because of faulty
switching element E21, similarly.

The above 4 paths from input link 0 to out-
put links 2, 3, 10,and 11 can be constructed by
allowing each two cycles, that is, 0 → 8 → 2
(0 → 8, 8 → 2), 0 → 8 → 3, 0 → 8 → 10, and
0 → 8 → 11, respectively. In these 4 routes,
the common path 0 → 8 means permutation
product Γ2 (= I · τ0 · I · τ1 · σ · τ2 · I), and
path 8→ 2 means Γ9. The other 4 paths from
input link 2 to output links 2, 3, 10, and 11
can also be constructed by allowing each two
passes, that is, 2 → 12 → 2 (2 → 12, 12 → 2),
2 → 12 → 3, 2 → 12 → 10, and 2 → 12 → 11,
respectively. In these 8 routes as we have seen,
Γ2, Γ8, Γ9, Γ10, and Γ11 are common to pairs of
paths 0 → 8 and 2 → 12, 8 → 3 and 12 → 11,
8 → 2 and 12 → 10, 8 → 11 and 12 → 3, and
8 → 10 and 12 → 2, respectively. This means
the above 8 routes can be constructed by us-
ing the following extra 8-permutation-products
sequence.

Γ2

Γ8

Γ2

Γ9

Fig. 2 (a) A 16× 16 banyan network and (b) the
matrix L′.

Γ2

Γ10

Γ2

Γ11

Observing L′ in Fig. 2 (b), we can construct all
other 6 × 4 paths related to input links 1, 3,
4, 5, 6, and 7 can be constructed by allowing
routes via two common transitive output termi-
nals 8 and 12. We next consider a case of faulty
switching element E20. In this case, fault-
tolerant routes can be constructed by allowing
routes via another two common transitive out-
put terminals 10 and 14. In the case of faulty
switching element E2l (0 ≤ l ≤ n/4− 1), fault-
tolerant routes can be constructed by allowing
routes via either of the two pairs of common
transitive output terminals (8, 12) and (10, 14).
On the other hand, in the case of faulty switch-
ing element E1l, by observing L′, it can be ob-
tained that necessary fault-tolerant routes can
be constructed by allowing routes via the same
number of common transitive output terminals,
that is 2. We can say, by observing L′, that the
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number of common transitive output terminals
discussed above can be taken as always 2 for a
faulty switching element on any inside stage.

From the above discussion, in the case of
faulty switching element Eil (0 < i ≤ log n −
2, 0 ≤ l ≤ n/4−1), we can perform an all-to-all
personalized communication by preparing ex-
tra 2n cycles. This means total 3n cycles are
required.

In the above discussion, input links pairs
(0, 2), (1, 3), (4, 6), · · · are the key for the fault-
tolerance. We will next consider these input
link pairs in a generalized n × n matrix L′.
Figure 3 shows the matrix L′ in the case of
faulty switching element Eil (0 < i ≤ log n −
2, 0 ≤ l ≤ n/4−1). In this figure, A and B mean
domains where a set of output links which have
some disconnected paths from an input link is
included and not included, respectively. The
key input link pairs can be obtained by the fol-
lowing algorithm.

Algorithm B:
if i > 1 then d = 2i−1; else d = 2;
for j = 2i+1 × �l/2i� to 2i+1 × �l/2i� +
d− 1 do

if i > 1 then key input link pairs
are (j, j+d) and (j+2i, j+2i +d);
else key input link pairs are (j, j+
d);

end for;
Two common transitive output terminals for
obtained key input link pairs are

when l mod 2i �= 0,
n/2 for input links j and j + 2i,
n/2 + 2d for input links j + d and
j + 2i + d,

when l mod 2i = 0,
n/2+2 for input links j and j+2i,
n/2 + 2 + 2d for input links j + d
and j + 2i + d.

Figure 3 shows the upper case, that is the case
when l mod 2i �= 0. Algorithm B is applicable
to the case of n > 8, see Appendix in the special
case n = 8.

Example 2 Let us consider a 16 × 16
banyan network with faulty switching element
E11. Input links 0, 1, 2, and 3 have no path to
output links 2, 3, 6, 7, 10, 11, 14, 15 because
of E11. The key input link pairs are (0, 2) and
(1, 3) because of i = 1 and d = 2. These four
input links can be connected to the output links
by allowing two cycles for each path between
input and output links. Let us sum up and
classify the required two passes by common re-

Fig. 3 An n × n matrix L′ in the case of faulty
switching element Eil.

quired permutation products, that is, 0→ 8→ 2
and 2 → 12 → 10 (which require Γ2 and Γ9),
0 → 8 → 3 and 2 → 12 → 11 (Γ2 and Γ8),
. . ., 0 → 8 → 15 and 2 → 12 → 7 (Γ2 and
Γ14), 1 → 8 → 2 and 3 → 12 → 10 (Γ10 and
Γ9), 1 → 8 → 3 and 3 → 12 → 11 (Γ10 and
Γ8), . . ., 1 → 8 → 15 and 3 → 12 → 7 (Γ10

and Γ14). We prepared 2× 16 cycles. So, total
3× 16 cycles are required.

We have considered the faulty switching ele-
ment Eil (0 < i ≤ logn − 2, 0 ≤ l ≤ n/4 − 1).
Matrix L′ in Eil (0 < i ≤ log n − 2, n/4 ≤
l ≤ n/2− 1) can be easily imagined as domains
A and B are in apposition to Fig. 3, and nec-
essary fault-tolerant routes can be constructed
in the same manner. Though Algorithm B is
available, two common transitive output termi-
nals for obtained key input link pairs must be
changed as follows:

When l mod 2i �= 0,
0 for input links j and j + 2i,
2d for input links j+d and j+2i +
d.

When l mod 2i = 0,
2 for input links j and j + 2i,
2 + 2d for input links j + d and
j + 2i + d.

Now, let us generalize our discussion. Since
the number of input links which have a discon-
nected path to the output link is 2i+1, then
the total number of key input link pairs is
2i+1/2 = 2i. The number of output links which
have some disconnected paths from an input is
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Fig. 4 Matrix L′ in the case of 32× 32 banyan
network with faulty switching element E21.

n/2i. Therefore, the number of required ex-
tra cycles to construct fault-tolerant routes is
2i × (n/2i) × 2 = 2n. From the above discus-
sion, we could obtain a result that the upper
bound of the number of required cycles to per-
form an all-to-all personalized communication
in an n×n banyan network with a single inter-
nal fault is 3n.

Fortunately, n×n banyan networks can have
a lower upper bound than the 3n we just ob-
tained, in the case of n > 16 where 3 or more
cycles can be performed by a single permu-
tation product. Next, we will discuss these
cases. Figure 4 shows L′ in the case of 32×32
banyan network with faulty switching element
E21. Four routes 0 → 16 → 3, 2 → 20 → 11,
4 → 24 → 19, and 6 → 28 → 27 can be con-
structed by only 2 permutation products Γ2

and Γ16. Another four routes 0 → 16 → 2,
2 → 20 → 10, 4 → 24 → 18, and 6 → 28 → 26
can be constructed by Γ2 and Γ17, . . .etc. By
using these bypasses, all routes from each of the
input links 0, 2, 4, and 6 to every output link
can be constructed. By using pairs of permu-
tation products Γ18 and Γ16, Γ18 and Γ17, Γ18

and Γ18, . . .etc., all routes from each of the in-
put links 1, 3, 5, and 7 to every output link
can be constructed. The total number of ex-
tra cycles is 8 (= the length of each square:

n/2i)×2 × 2 = n in this case. In this case we
conclude n extra cycles and then the total 2n
cycles are required to perform an all-to-all per-
sonalized communication.

Let us generalize this case. In matrix L′ in
the case of n×n banyan network with the faulty
switching element Eil, domain A is an n× 2i+1

matrix. We will pay attention to “the number
of entries which are in a row and in domain
A but not in solid squares, and whose names
are the same as columns which have entries in
squares written by dotted lines in the same row
and in domain B”. It is obvious that this num-
ber is the number of routes between input and
output links realized by two permutation prod-
ucts. In the above example, since a set of en-
tries which are in the 3-rd row in domain A, but
not in solid sequences, and whose names are the
same as columns which have entries in squares
written by dotted lines in the 17-th row and in
domain B is {16, 20, 24, 28}, then the number
is 4. Let us prove that this number is 2 when
i = 1 or logn− 2, otherwise 4.

From the property of Matrix L′ for Eil, it is
obvious that there always exists a row whose
some entries in domain A are given by the fol-
lowing set X;

X = {n/2, n/2 + 2, n/2 + 4,
. . . , n/2 + 2 · (2i+1 − 1)}

when i < logn− 2, or

X = {n/2, n/2 + 2, n/2 + 4,
. . . , n/2 + 2 · (2log n−2 − 1)}

when i = logn− 2.
Therefore, a set X ′ whose elements in solid
squares are excluded from X is given as

X ′ = {n/2, n/2 + 2, n/2 + 4, . . . ,
n/2 + 2 · (l mod 2i)− 2,
n/2 + 2 · (l mod 2i) + 2,
n/2 + 2 · (l mod 2i) + 4, . . . ,
n/2 + 2 · (l mod 2i) + 4 · 2i−1 − 2,
n/2 + 2 · (l mod 2i) + 4 · 2i−1 + 2,
n/2 + 2 · (l mod 2i) + 4 · 2i−1 + 4,
. . . , n/2 + 2 · (2i+1 − 1)}

when i < logn− 2, or

X ′ = {n/2, n/2 + 2, n/2 + 4, . . . ,
n/2 + 2 · (l mod 2log n−2)− 2,
n/2 + 2 · (l mod 2log n−2) + 2,
n/2 + 2 · (l mod 2log n−2) + 4,
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. . . , n/2 + 2 · (2log n−2 − 1)}
when i = logn− 2.

From the property of Matrix L′, it is also ob-
vious that there exists the following set Y of
columns whose entries belong to squares writ-
ten by dotted lines in the same row and in do-
main B:

Y = {n/2, n/2 + 2 · 2i−1,

n/2 + 4 · 2i−1, n/2 + 6 · 2i−1,

. . . , n/2 + (n/2− 2 · 2i−1)}
when l mod 2i �= 0, or

Y = {n/2 + 2, n/2 + 2 + 2 · 2i−1,

n/2 + 2 + 4 · 2i−1, n/2 + 2 + 6 · 2i−1,

. . . , n/2 + 2 + (n/2− 2 · 2i−1)}
when l mod 2i = 0.

The number which we would like to obtain is
|X ′ ∩ Y |.
When l mod 2i �= 0,

X ′ ∩ Y =




{n/2, n/2 + 4 · 2i−1}
for i = 1,

{n/2, n/2 + 2 · 2i−1,

n/2 + 4 · 2i−1, n/2 + 6 · 2i−1}
for 1 < i < logn− 2,

{n/2, n/2 + 2 · 2i−1}
for i = log n− 2,

when l mod 2i = 0,

X ′ ∩ Y =




{n/2 + 2, n/2 + 2 + 4 · 2i−1}
for i = 1,

{n/2 + 2, n/2 + 2 + 2 · 2i−1,

n/2 + 2 + 4 · 2i−1,

n/2 + 2 + 6 · 2i−1}
for 1 < i < logn− 2,

{n/2 + 2, n/2 + 2 + 2 · 2i−1}
for i = log n− 2,

From the above discussion, we obtain

|X ′ ∩ Y | =
{
4 for 1 < i < logn− 2,
2 otherwise.

From the above discussion, the additional
number of cycles because of single fault Eil is

(n/2i) · 2 · (2i+1/t),
that is, n/(2−2 · t) is obtained. Where t =
|X ′ ∩ Y |, and 2i+1 is the number of columns
of domain A. This result can be summed up in
the following theorem.

Theorem 1 All-to-all personalized commu-
nication in a logn-stage banyan network with
the single faulty switching element Eil on any
internal i-th stage can be achieved in cycles of
the following upper bound U(i):

if i = 1 or logn− 2,
U(i) = 3n.

Table 1 The upper bound of the number of required
cycles.

faulty switching element
n E1l E2l E3l E4l E5l E6l E7l E8l

24 3n 3n
25 3n 2n 3n
26 3n 2n 2n 3n
27 3n 2n 2n 2n 3n
28 3n 2n 2n 2n 2n 3n
29 3n 2n 2n 2n 2n 2n 3n
210 3n 2n 2n 2n 2n 2n 2n 3n

Fig. 5 Matrix L′ in the case of 32× 32 banyan
network with faulty switching element E11.

if i = 2, . . . , logn− 3,
U(i) = 2n.

proof: It is obvious from the above discus-
sion. Table 1 shows the upper bound given by
Theorem 1.

Example 3 Let us consider a 32 × 32
banyan network with the faulty switching el-
ement E11. Matrix L′ in the case of E11

is shown in Fig. 5. Since set X is given
by X = {16, 18, 20, 22}, set X ′ is given by
X ′ = {16, 20} and set Y is given by Y =
{16, 18, 20, 22, 24, 26, 28, 30}. Therefore, it is
X ′ ∩ Y = {16, 20} and |X ′ ∩ Y | = 2 is ob-
tained. This number t = 2 leads us to the addi-
tional number of cycles which is 2n. Then, total
3n cycles are required to perform an all-to-all
personalized communication in the banyan net-
work.
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4. Conclusion

We have presented a method of fault-tolerant
all-to-all personalized communication that can
tolerate to a single non-critical fault. The
proposed method has the upper bound of re-
quired cycles depending on the stages with
faulty switching element. The results obtained
in this paper say that a single fault on an in-
ternal stage compels the all-to-all personalized
communication to pay double ∼ three times as
much as the communication time is required in
a nonfaulty case.
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Appendix

Case n = 8 is a special case where for faulty
switching element E11, an example of extra
permutation products sequence is as following
(2n+ 1)-permutation-products sequence:

0 1 2 3 4 5 6 7


0 2 4 6 1 3 5 7
2 0 6 4 3 1 7 5
7 5 3 1 6 4 2 0
5 7 1 3 4 6 0 2
1 3 5 7 0 2 4 6
4 6 0 2 5 7 1 3
6 4 2 0 7 5 3 1
3 1 7 5 2 0 6 4
0 2 4 6 1 3 5 7
7 5 3 1 6 4 2 0
4 6 0 2 5 7 1 3
2 0 6 4 3 1 7 5
3 1 7 5 2 0 6 4
4 6 0 2 5 7 1 3
7 5 3 1 6 4 2 0
0 2 4 6 1 3 5 7
3 1 7 5 2 0 6 4
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