1770

TH AL H 2 2 B30I CP R T 1) 2 E k&

AW -4

Evaluation of Distributed Garbage Collection System for PIE64

Abstract

In this paper, we will evaluate an algorithm for garbage
collection of distributed heap memories. We propose
that a garbage collector should be comprised by several
layers of garbage collections. We refer such a garbage
collector to as Garbage Collection System (GCS). Our
GCS is mainly based on static analysis and a combi-
nation of Reference Counting on memory pages and
Mark-Scan Scheme. Just as illustrated later, our al-
gorithm, which deals with variable size objects, is very
time-efficient, partly real-time and can be implemented
with very little space overhead.

1 Introduction

There must be many kinds of objects in a system.
These kinds of objects can be divided into several cat-
cgories according to their consuming rates. According
to the characteristics of each one of these categories,
we choose a garbage collection scheme appropriate for
it. All of these garbage collections make up what we
call the Garbage Collection System (GCS). The main
differences between the concept of GCS and the basic
idea of the works before ours are:

1. We recommend that for different layers of a GCS,
different schemes should be adopted if it is neces-
sary and feasible.

2. In a GCS, objects are divided by consuming rates
rather than lifetimes of them.

We need not be afraid that some kinds of objects
of low consuming rates leak out from our real-time
garbage collection, even we would leak them out {from
our real-time garbage collection deliberately, as long as
we can collect them eventually by another layer of our
GCS. This is our basic idea.

2 Object-Management System

If we can allocate according to the lifetimes of ob-
jects as well as according to their consuming speeds,
we can reuse memory efliciently. This makes it possi-
ble to count references to pages instead of to objects

*Tanaka Lab., Dept.
Tokyo

of Electrical Engineering, Univ. of

Lu Xu, Yasuo Hidaka, Hanpei Koike, and Hidehiko Tanaka *

and combine Reference Counting with Mark-Scan eas-
ily. Therefore, the objects in our system are classi-
fied into several categories according to their consum-
ing speeds. Under one category for which we want
to collect the garbage by Reference Counting Scheme,
objects are furthermore divided into several kinds ac-
cording to their lifetimes and we allocate these kinds
of objects in different places. Each kind of objects may
be stored in several pages.

3 GCS of PIE64

Our garbage collection system consists of three stages:

1. Real-time garbage collection based on Paging Ref-
erence Counting,

2. Local garbage collection of goal frame areas, which
is accomplished independently by each IU (Infer-
ence Unit) and much more quickly than the con-
ventional Mark-Scan method,

3. Global garbage collection by the Mark-Scan
method.

In fact, there are only two categories of objects in
PIEG4. The first and second stages are provided for
the same one category: SRO (Single Reference Ob-
jects). The third stage is provided for the other cate-
gory: UNSRO.

4 Performance Evaluation

4.1 Space Overhead

At first, we would like to analyze the spatial over—
head of our GCS. In our GCS, there are two kinds

of spatial overhead. One is that used for the real-time

garbage collection. The other part is that used for the

global garbage collection. Therefore, the total amount

of space overhead is 2N + o(N).

4.2 Real-Time Nature

Because we only offer the real-time garbage collection
for SRO, therefore, the real-time nature of our GCS
relies on
¢ the percentage of the memories consumed by SRO
over that consumed totally,
o the percentage of the pages collected by real-time
garbage collection over that collected our GCS.
Intuitively, the first percentage represents the nature
of FLENG language. The second percentage shows the

1771

Total SRO UNSRO
Program Pages SRO Pages [Allocation | Average | UNSRO Pages | Allocation | Average
Consumed | Percentage Times Size Percentage Times Size
6-Queen 237.14 96.67 56859 4.03 3.33 6433 1.23
10-Append 1.91 95.20 566 3.21 4.80 81 1.13
13-Nreverse 1.81 89.87 522 3.12 10.13 133 1.38
10-Merge 2.13 93.92 627 3.20 6.08 107 1.21
Table 1: Consuming Rates
Programs | 1U Number and LMS® | Percent (RGC?) | Percent (LGC®) | Percent (GGC?)
6-Queen 4 IUs, LMS = 23 54.65 25.29 20.07
7-Queen 4 IUs, LMS = 50 55.78 31.66 12.56
13-Append f4 1Us, LMS = 13 100.0 0.00 0.00
10-Merge 4 IUs, LMS = 13 100.0 0.00 0.00

“means Local Memory Size and the unit is page.
*Real-Time Garbage Collector
°Local Garbage Collector
4Global Garbage Collector

Table 2: Performance of the GCS

IU Number The Clocks Taken | The Ratio
and LMS by One GGC to1 IU
11U, LMS = 20 122743.13 1.00
4 IUs, LMS = 20 118211.38 0.96
16 IUs, LMS = 20 119997.48 0.98
64 IUs, LMS = 20 124390.21 1.01

Table 3: Performance of the Cooperations between
Processors

nature of our GCS.

From Table 1, we can know immediately that the
storage consumed by SRO is always above ninety per-
cent. This nature is the base of our collector.

From Table 2, we can know that the garbage collected
by the real-time garbage collector is over fifty percent.
If we include the local garbage collector, we can see the
garbage collected “in time” is about eighty percent.
From the results, we can imagine that the real-time
nature of our collector is quite good.

4.3 The Performance of Co-operations be-
tween Processors

We designed some cooperations between processers
and expect this will alleviate the impact of remote ref-
erences to some extent. The results are list in Table 3.

When the number of IUs increases to sixty-four, the
time taken by the global garbage collection only in-
creases about one percent compared to the case of
uniprocessor. This implies the co-operations designed
to alleviate the effect of remote references on the global
garbage collection work very well.

From the evaluations above, we can claim our GCS
is able to satisfy the aims proposed in the first section.
We think it is the cheapest and is sufficient for PIE64.

5 Comparisons with other Works

5.1 Weighted Reference Counting

This algorithm is proposed on the base of Reference
Counting, Its advantages are real-time, simplicity and
high efficiency of memory reuse.

But its real-time nature is gained at the cost of time
and space. Our purpose is to get high both efficiency
and real-time property, so we must make a compro-
mise. For the environment of PIEG4, the local mem-
ories are mainly consumed by SRO objects, especially
by goalframes, so if we reclaim the areas of SRO in
time, we can obtain real-time nature to a great extent.

5.2 Copying Algorithm

When this kind of method is implemented for the en-
vironment of PIE64, indirection tables are used for
remote references in processing. Another problem is
that the amount of floating garbage will be increased
rapidly. The main problem, we think, is its high spatial
overhead.

5.3 Mark-Compaction Algorithm

This method is of very good efficiency both in time and
in space. But it loses real-time property completely. In
fact, our global garbage collection is based on it.

References

[1] Xu, L., Shimada, K., Shimizu, T., Koike, H. and
Tanaka, H. The Distributed Garbage Collection
for Parallel Inference Machine PIEG4. Proc. 38th
Annual Convention IPS, Japan. 1988,

