
Vol. 42 No. 12 IPSJ Journal Dec. 2001

Regular Paper

A Framework for Secure Distributed Workflows

Vlad Ingar Wietrzyk,
†
Katsuya Tanaka

††

and Makoto Takizawa
††

Workflow Management Systems (WFMSs) provide an automated framework for managing
intra- and inter-enterprise business processes. Workflow is a critical enabler in today’s hot
technologies, such as portals and e-business. This paper describes the design of a model as
well as the architecture to provide support for distributed advanced workflow transactions.
We discuss the application of transaction concepts to activities that involve the integrated
execution of multiple tasks over different processes. These kinds of applications are described
as transactional workflows. A distinguishing feature of the workflow transaction support sys-
tem proposed is the ability to manage the arbitrary distribution of business processes over
multiple workflow management systems. We choose to develop a formal framework for a
secure distributed workflow architecture since interworkflow is anticipated as a major sup-
porting mechanism for Business-to-Business Electronic Commerce. We strive to develop a
practical logical characterisation of multilevel secure (MLS) distributed workflow for the first
time using the inherently difficult concept of non-monotonic reasoning.

1. Introduction

Many technical and non-technical issues
hinder enterprise-wide workflow management.
Workflow types cannot always be fully prede-
fined, therefore they often need to be adjusted
or extended during operation. Distributed
workflow execution across functional domains
is necessary, but distribution transparency is
currently impossible because, different types of
Workflow-Management-Systems (WFMSs) im-
plement different WFMS metamodels.
One possible way to enable distributed

workflow execution is to build a workflow-
management infrastructure integrating differ-
ent and heterogeneous WFMSs. Users would
have access to total funcionality because they
access the workflow-management underlying in-
frastructure, not individual WFMSs. The re-
sulting architecture is general and can accom-
modate as many WFMSs as required.
Transaction concepts have begun to be ap-

plied to support applications or activities that
involve multiple tasks of possibly different types
- including, but not limited to transactions, and
executed over different types of entities - includ-
ing DBMSs. The architect of such applications
may specify inter-task dependencies to define
task coordination requirements, and additional
requirements for isolation, and failure atomic-

† School of Computing, University of Western Sydney
†† Department of Computers and Systems Engineer-
ing, Tokyo Denki University

ity of the application. Generally we will refer to
such applications as multi-system transactional
workflows.
The recent trend to distributed workflow ex-

ecutions requires an even more advanced trans-
action support system that is able to handle
distribution.
To summarise, the new aspects of our ap-

proach to security in distributed workflow
database management systems include the fol-
lowing research contributions. The novel ap-
proach to the development of a practical logical
characterisation of multilevel secure (MLS) dis-
tributed workflow for the first time using the
inherently difficult concept of non-monotonic
reasoning. A distinguishing feature of the work-
flow transaction support system proposed is the
ability to manage the arbitrary distribution of
business processes over multiple workflow man-
agement systems. We chose to develop a formal
framework for a secure distributed workflow
architecture since we are actively involved in
building a prototype of such a system. We also
derived a general theorem which must be active
when classifying every item of information. We
have planned the presentation of the current re-
search as follows. We first present a brief intro-
duction to work on workflow transaction mod-
els and discuss extended-relaxed approach to
handle workflow transactions in Section 2. Sec-
tion 3 covers related aspects of workflow distri-
bution and heterogeneity. A number of relaxed
transaction models in workflow contexts have
been defined recently. These models are per-

2974

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2975

mitting a controlled relaxation of the transac-
tion isolation and atomicity to better match the
requirements of various workflow applications.
There are discussed in Section 4. In Section 5 we
develop a formal model. Also some axioms re-
lated to the multilevel secure distributed work-
flow model are given from which the theorems
regarding secure workflow database models are
derived. Section 6 provides review of the funda-
mental concepts of multilevel security and mul-
tiversion serialisability theory. In Section 7 the
implementation of the secure distributed work-
flow is covered in greater depth by providing rel-
evant details describing the workflow run-time
environment. Section 8 supplies the details re-
lated to evaluating the quantitative effects of
the workflow system. Section 9 concludes the
paper with a summary and a short discussion
of future research.

2. Related Work

Some known examples of extended-relaxed
transaction models are reported in Refs. 3) and
4).
In the WIDE project 5), a workflow is sup-

ported at two transaction levels: global and lo-
cal. At the global level, the SAGA-based model
offers relaxed atomicity through compensation
and relaxed isolation by limiting the isolation
to the SAGA steps. At this level of granularity,
the workflow activities are defined and there-
fore the grouped workflow activities follow the
strict ACID properties. However, the flexibility
in assigning transaction properties to workflow
activities is limited to the extended SAGA or
nested transaction model.
Support for long-duration applications has

been independently extended by practitioners
and researchers focusing on workflow systems
and transaction systems. Extended transaction
systems structure a large transaction into sub-
transactions and execute them with additional
constraints on the individual sub-transactions.
Some researchers in workflow systems have pro-
posed the notion of transactional workflow 6).
In a transactional workflow environment, addi-
tional correctness requirements can be specified
on top of traditional workflow specifications.
The Workflow Management Coalition has

specified a standard interface to facilitate the
interoperability between different WFMSs 7).
However, they do not address transactional is-
sues with the exception of writing an audit log.
The transaction model used in the Exotica

project 8) is based on the SAGA model, but re-
lies on statically computed compensation pat-
terns. As a result, its functionality is limited
compared to the work presented in this research
paper.
Finally, most commercial products are de-

signed around a centralised database. This
database and the workflow engine attached to
it—in most cases there is a single workflow en-
gine presenting a point of failure which quickly
becomes a bottleneck and is not capable of pro-
viding a sufficient degree of fault tolerance.
To summarise, databases and workflow man-

agement systems are complementary tools
within the corporate computing resources.
Databases address the problem of storing and
accessing data efficiently. Workflow manage-
ment systems address the problem of monitor-
ing and coordinating the flow of control among
heterogeneous activities.
Very often, a WFMS processes data for which

high standards must be set with respect to pri-
vacy and data security. Most of the workflow
transaction management theory for multilevel
secure database systems has been developed for
workflow transactions that act within a single
security class. In our research work, we look
at workflow transactions that act across secu-
rity classes, that is, the workflow transaction
is a multilevel sequence of database commands,
which more closely resemble user expectations.
We propose a formal model and semantics for
interpreting security issues in a workflow archi-
tecture which can incooperate a multilevel de-
ductive database.
2.1 An Architecture for Multilevel Se-

cure Workflow Interoperability
Global information management strategies

based on a sound distributed architecture are
the foundation for effective distribution of com-
plex applications that are needed to support
ever changing operational conditions across se-
curity boundaries. What we need is a new MLS
distributed computing paradigm that can assist
users at different locations and at different se-
curity levels to cooperate.
A user can initiate a distributed workflow

transaction at any site. If access to objects
stored at remote sites is required, the dis-
tributed workflow transaction initiates a sub-
transaction at the remote site. To guarantee a
correct execution of distributed workflow trans-
actions, each site in the distributed workflow
database is under the operation of a concur-

2976 IPSJ Journal Dec. 2001

rency control protocol and an atomic commit
protocol.
We present the fully distributed architecture

for implementing a Workflow Management Sys-
tem (WFMS). An MLS workflow management
system consists of a set N of sites, where each
site N ∈ N is an MLS database. The sites
in the workflow system are interconnected via
communication links over which they can com-
municate. The WFMS architecture operates
on top of a Common Object Request Bro-
ker Architecture (CORBA) implementation. A
CORBA’s Interface Definition Language (IDL)
can be used to provide a means of specify-
ing workflows. Also we assume that commu-
nication links are secure—possibly using en-
cryption. This distributed workflow transac-
tion processing model describes mainly those
components necessary for the distribution of a
transaction on different domains.
A domain is a unit of autonomy that owns

a collection of flow procedures and their in-
stances. In practical terms, a domain might
define the scope of a department or division in
an organisation. Therefore, flows are grouped
by domains and each domain also manages a
set of flow procedures installed in the domain.
A domain is not defined or limited by net-
works, processors, or peripherals. The man-
ager of resources can, however, be designed in
any fashion, they are exclusively responsible
for the ACID properties on their data records.
Solely the interface to the components of the
distributed workflow model must exist.
If a transaction should be distributed on sev-

eral domains—a global transaction, in every do-
main, there must exist the following compo-
nents, (see Fig. 1).
• TM—Transaction-Manager. The transac-

tion manager plays the role of the coordi-
nator in the respective domain. If a trans-
action is initiated in this domain, the TM
assigns a globally unique identifier for it.
The TM monitors all actions from appli-
cations and resource managers in its do-
main. In every domain involved in the
distributed workflow transaction environ-
ment, there exists exactly one TM.

• CRM—Communication-Resource-Manager.
Multiple applications in the same domain
talk with each other via the CRM. This
module is used by applications but also
other management components for inter-
domain communication. CRM is the most

important module with respect to the
transactional support for distributed work-
flow executions. Our model specifies the
T*RPC as a communication model, which
supports a remote procedure call (RPC) in
the transactional environment.

• RM—Resource-Manager. An accountable
performer of work. A resource can be a per-
son, a computer process, or machine that
plays a role in the workflow system. This
module controls the access to one or more
resources like files, printers or databases.
The RM is responsible for the ACID prop-
erties on its data records. A resource has
a name and various attributes defining its
characteristics. Typical examples of these
attributes are job code, skill set, organisa-
tion unit, and availability.

• AMS—Administration-Monitoring-Service.
The monitoring manager is used to control
the workflow execution. In our approach,
there is no centralised scheduler. In the
figure, each Task Manager—designated as
TSM, is equipped with a conditional frag-
ment of code which determines if and when
a given task is due to start execution. The
scheduler communicates with task man-
agers using CORBA’s asynchronous Inter-
face Definition Language (IDL) interfaces.
Task managers communicate with tasks
using synchronous IDL interfaces as well.
AMS module is also responsible for the co-
ordination of the different sites in case of
an abort that involves multiple sites. Indi-
vidual task managers communicate to the
monitoring manager their internal states,
as well as data object references - for pos-
sible recovery.

The distributed architecture suits the inher-
ent distributional character of workflow ade-
quately in a natural way.
This approach also eliminates the bottleneck

of task managers having to communicate with
a remote centralised scheduler during the exe-
cution of the workflow. This architecture also
posseses high resiliency to failure—if any one
node crashes, only part of the workflow is af-
fected.

3. Distributed Workflow Concepts

Workflow distribution introduces additional
levels of requirements. Distributed workflow
execution across heterogeneous WFMSs is cur-
rently not possible in a transparent way, there-

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2977

Fig. 1 Distributed workflow architecture.

fore we must consider the problem of workflow
funcionality isolation. To efficiently define a
work breakdown structure a functional decom-
position by means of subworkflows is required.
This in turn requires version and variant
management, because each reused-workflow-
definition alteration might lead to a new vari-
ant or configuration of the reusing workflow
definition, if it necessitates to stay related to
the old version. Dynamic changes of running
workflows require a workflow’s functional de-
composition to change. This might also in-
volve replacing elementary workflow tasks with
other composite workflow definitions. Workflow
distribution is called homogeneous if the asso-
ciated WFMSs are of the same type, hetero-
geneous otherwise. A workflow is distributed
when at least two of its objects reside in two

different WFMS installations. This is relevant
to workflow definitions as well as workflow in-
stances. An often-cited situation is subwork-
flow distribution, where subworkflows are sub-
ject to execution on remote WFMSs. Some
variants are possible, such as executing a sub-
workflow synchronously or asynchronously to
the invoking workflow. One of the typical vari-
ants involves executing some part of a workflow
on one WFMS, and continuing on another (see
Fig. 2).
If the associated WFMSs, do not know about

each other, then it is indirect distribution. In
this case, the WFMSs do not implement distri-
bution natively and the system designer must
attach distribution functionality to the associ-
ated WFMSs. A recognised way is to establish
communication buffers between the WFMSs,

2978 IPSJ Journal Dec. 2001

Fig. 2 Workflows division across different WFMSs.

Fig. 3 The distribution task invokes an application
for buffer communication.

such as a database or persistent file stores. Fig-
ure 3 shows an example workflow definition
with one distribution task. The distribution
task invokes an application for buffer commu-
nication. Typically, workflow types can be dis-
tributed, too.

4. Relaxed Transaction Models in
Workflow Contexts

A number of relaxed transaction models have
been defined recently that permit a controlled
relaxation of the tranaction isolation and atom-
icity to better match the requirements of vari-
ous workflow applications. Usually, we will re-
fer to such applications as multi-system transac-
tional workflows. This area has been also influ-
enced by the concept of long running activities.
The intention is to merge advanced transac-

tion technology and workflow management sys-
tems to support business processes with well-
defined failure semantics and recovery features.
Our work is based on an interpretation of the
workflow operations from the databases point
of view.
4.1 Transactional Workflows
Support for workflow applications has been

addressed by researchers focusing on workflow
systems and transaction systems. Extended
transaction systems structure a large transac-
tion into sub-transactions and execute them
with additional precedence requirements be-
tween start, commit, abort of the individual
sub-transactions. Our approach falls in the cat-
egory of transactional workflows 6) where addi-
tional correctness requirements can be speci-

fied on top of traditional workflows specifica-
tions. These requirements specify additional
constraints on workflow execution schedules.
Workflow management systems coordinate the
execution of applications distributed over net-
works. The need for the coordinated execu-
tion of workflow steps arises from application
as well as data consistency requirements. Flexi-
ble transactions work in the context of heteroge-
neous distributed multidatabase workflow envi-
ronments 10). In such workflow environments,
each database acts independently from the oth-
ers. Because a local database can unilater-
ally abort a transaction, it is not possible to
enforce the commit semantics of global trans-
actions. Therefore, flexible transaction were
designed to address this problem. The tradi-
tional transactions are usually characterised by
the atomicity, consistensy, isolation and dura-
bility requirements, called the ACID properties
of transactions. To better support workflow op-
erational environments, the flexible transaction
model relaxed the isolation and atomicity prop-
erties. This approach is the direct result of our
belief, that tying a workflow system to a par-
ticular transaction model, will result in major
restrictions that will limit its applicability and
usefulness as a workflow tool.
4.2 A Formal Model of Flexible Trans-

actions
From a user’s point of view, a transaction is

a sequence of actions performed on data items
in a database. Flexible transaction models
proposed for the distributed workflow environ-
ment will increase the failure resiliency of global
transactions by allowing alternate subtransac-
tions to be executed when a local database fails
or a subtransaction aborts. The approach sup-
ports the concept of varied transactions allowing
compensatable and noncompenstable subtrans-
actions to coexist within a single global trans-
action. This transactional environment allows
a global transaction to have a weaker (relaxed)
form of atomicity, termed semi-atomicity, while
still maintaining its correct execution in the
workflow. In a workflow multidatabase envi-
ronment, a local transaction is a set of subtrans-
actions, where each subtransaction is a transac-
tion accessing the data items at a single local
site. The concurrency control of global trans-
actions require, that each global transaction
has at most one subtransaction at each local
site 11). Following Refs. 10) and 12), the defi-
nition of flexible transactions takes the form of

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2979

a high-level specification. The flexible transac-
tion model supports flexible execution control
flow by specifying two kinds of dependencies
among the subtransactions of a global transac-
tion:
• Execution ordering dependencies between

two subtransactions.
• Alternative dependencies between two sub-

sets of subtransactions.
In what follows, we shall formally describe

the flexible execution control in the flexible
transaction model.
Let Ω = {t1, t2, . . . , tn} be a collection of sub-

transactions and Π(Ω) the collection of all sub-
sets of Ω. Let ti, tj ∈ Ω and Ti, Tj ∈ Π(Ω).
Two types of control flow relations are defined
on the subsets of Ω and on Π(Ω), namely:
• precedence ti ≺ tj if ti precedes tj (i �= j);
• preferece Ti � Tj if Ti is preferred to Tj

(i �= j). If Ti � Tj , we also declare that Tj

is an alternative to Ti.
Both of the above relations, precedence and

preference are irreflexive and transitive or more
formally, for each ti ∈ Ω, ¬(ti ≺ ti); and for
each Ti ∈ Π(Ω), ¬(Ti � Tj). If ti ≺ tj and
tj ≺ tk, then ti ≺ tk; if Ti � Tj and Tj � Tk,
then Ti � Tk.
From the above definitions, we can see then,

the precedence relations determines the correct
parallel and sequential execution ordering de-
pendencies among the subtransactions, while
the preferece relation determines the priority
dependencies among alternate sets of subtrans-
actions for selecting in completing the execution
of Ω.
Now a flexible transaction can be defined as

follows:
Definition 1. Flexible transaction A flexible
transaction Ω is a set of related
subtransactions on which the precedence (≺)
and preference (�) relations are defined.
The semantics of the precedence relation

refers to the execution order of subtransactions.
For example, t1 ≺ t2 may imply that t2 cannot
start before t1 finishes or that t2 cannot finish
before t1 finishes. By the same token, the pref-
erence relation defines alternative choices and
their priority. For example, {ti} � {tj , tk} may
imply that tj and tk must abort when ti com-
mits or that tj and tk should not be executed
if ti commits. In this environment, {ti} is of
higher priority than {tj , tk} to be chosen for
execution.
We consider that a workflow database state

is consistent if it preserves workflow database
integrity constraints. As it is the case for tra-
ditional transactions, the execution of a flexi-
ble transaction as a single unit should map one
consistent multidatabase workflow state to an-
other. We designate the relation (Ti,≺i) as a
partial order of subtransactions. (Ti,≺i) is a
representative partial order, if the execution of
subtransactions in Ti represents the execution
of the entire flexible transaction Ω. From the
above it is clear that, if (Ti,≺i) is a representa-
tive partial order, then there are no subsets Ti1

and Ti2 of Ti such that Ti1 � Ti2. Because each
global transaction has at most one subtrans-
action at a local site, each representative partial
order of a flexible transaction must have at most
one subtransaction at a local site. In our work-
flow execution environment, for flexible trans-
actions, the above definition of consistency re-
quires that the execution of subtransactions in
each representative partial order must map one
consistent workflow multidatabase state to an-
other.
4.3 Scheduling of Flexible Transac-

tions
Since the flexible transaction model was pro-

posed, much research has been devoted to its
application. The availability of visible prepare–
to–commit states in local database systems is
the basic assumption underlying this work. In
such an operational environment, the preserva-
tion of the semi-atomicity of flexible transac-
tions is relatively easy. As we mentioned in the
previous subsection, failures of subtransactions
in a flexible transaction are tolerated by taking
advantage of the fact that a given function can
frequently be accomplished by more than one
database system. Also, time used in conjunc-
tion with a subtransaction and global transac-
tion can be exploited in transaction scheduling.
A schedulable subtransaction may be sub-

mitted for execution to the transaction mod-
ule. The scheduler first has to check for sat-
isfaction of the preconditions for execution of
each subtransaction—it determines whether a
subtransaction is schedulable. This entails the
specification of the execution dependency among
the subtransactions of a global transaction. Ex-
ecution dependency 6), is a relationship among
subtransactions of a global transaction which
determines the legal execution order of the sub-
transactions.
Under normal operational circumstances, the

transaction execution state is used to keep track

2980 IPSJ Journal Dec. 2001

of the execution of the workflow subtransac-
tions. It is also used to determine if a global
workflow transaction has achieved its objec-
tives. When a subtransaction ti completes the
corresponding execution state, xi is set to S if
the subtransaction has achieved its objective,
and to F , otherwise. At a certain point of ex-
ecution, the objectives of the global workflow
transaction may be achieved. At that point,
the global transaction is considered to be suc-
cessfully completed and can be committed.
To support the specification of the execution

dependency, we define a transaction execution
state as follows:
Definition 2. The transaction execution state
x for a global transaction T with m
subtransactions, is an m– tuple
(x1, x2, . . . , xm) where:

xi =

E if ti is currently being
executed;

N if subtransaction ti has not
been submitted for execution;

S if ti has successfully
completed;

F if ti has failed or completed
without achieving
its objective;

A number of approaches can be used to assure
global serialisability which constitutes a satisfac-
tory correctness criterion for concurrent execu-
tion of multidatabase workflow transactions, if
there is a lack of additional information about
their semantics. The objective of concurrency
control is to assure that the serialisation order
of multidatabase workflow transactions should
be the same, at all sites they execute. It was
shown in Refs. 10) and 13), that the above
condition is sufficient to assure global serialis-
ability. However, in our workflow operational
environment this requirement can be relaxed
to require that the relative serialisation order
of Workflow Transactions should be the same
only at those nodes where they conflict. This
would lead to a weaker notion of serialisabil-
ity; called WT-serialisability, which will be used
as our correctness criterion for concurrent ex-
ecution of Workflow Transactions. We define
conflict among workflow transactions if they ex-
ecute at the same (local) site, and they are not
commutative. The conflict relation is transi-
tive, and therefore determines a set of equiv-
alence classes, which can be named as conflict
classes. In our workflow environment they are

used to determine the granularity of locking.
In order to define workflow transaction serial-
isability; WT-serialisability, let us consider two
workflow flexible transactions WTα and WTβ ,
and conflict classes, i and j. A global sched-
ule is WT-serialisable if for any subtransactions
STα

i and STα
j ∈ WTα, and ST β

i and ST β
j ∈

WTβ such that conflict (STα
i , ST

β
i) and con-

flict (STα
j , ST

β
j), ST

α
i ≺ ST β

i ⇒ STα
j ≺ ST β

j ,
at all sites they conflict. In our workflow envi-
ronment the ≺ relationship is defined in terms
of local serialisability. WT-serialisability estab-
lishes a partial order among all workflow flexi-
ble transactions. The submission order at each
system, can be used to determine the execu-
tion and, consequently, the serialisation order
at each site. Therefore, the concurrency control
mechanism of the local system will assure that
the transactions that are submitted to the local
system, will be executed correctly with respect
to the local concurrency control. As a result,
the lock held by a subtransation can be released
as soon as the subtransaction completes its sub-
mission phase. Therefore, we will have several
transactions that are executing concurrently at
each local site.

5. A Formal Approach to Support
Workflow Security

An MLS distributed workflow management
system should support functionality equivalent
to a single-level workflow management system
from the perspective of MLS distributed work-
flow users who design, implement and utilise
multilevel secure distributed workflows.
A number of models for secure workflow have

been proposed. These models differ in many
respects. Despite a heavy interest in building a
model of secure workflow management systems,
there is no clear understanding regarding what
a multilevel secure data model exactly is.
5.1 A Logic-Based Semantics for Mul-

tilevel Secure Workflow
In a multilevel secure workflow management

system users cleared to different security levels
access and share a database consisting of data
items at different sensitivity levels.
As a part of our research work, we introduce

a belief-based semantics for multilevel secure
workflow that supports the notion of a declar-
ative belief and belief reasoning in multilevel
security scheme (MLS) in a meaningful way.
We strive to develop a practical logical char-

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2981

acterisation of MLS workflow for the first time
using the inherently difficult concept of non-
monotonic reasoning.
Recent research shows that users in the MLS

workflow model have an ambiguous view and
confusing belief of data 14).
Multilevel security implements the policy of

mandatory protection defined in Ref. 15) and in-
terpreted for computerised systems by Bell and
LaPadula 16). In this research paper we assume
the representation and execution of MLS rules
obey the Bell-LaPadula “no read up, no write
down” principles. Many multilevel data mod-
els have been proposed in the literature, just to
mention a few: SeaView 17),18); also models pro-
posed by Sandhu-Jajodia 20),21); and by Smith-
Winslett 22) and many others. Some of these
models has its strong points (e.g., the belief-
based semantics of the Smith-Winslett model,
etc.). However, we argue that most of these pro-
posals are not completely satisfactory, in partic-
ular, if the workflow database may be polyin-
stantiated.
5.2 Multilevel Workflow Database
The majority of proposals for multilevel

workflow secure relational (MLS) databases
have utilised various syntactic integrity prop-
erties to control problems that arise under very
strict security, such as polyinstantiation and
proliferation of tuples resulting from updates,
with only some partial success. We propose
modal logic as a natural vehicle for reasoning
about security. Because much security is depen-
dent on the concept of what a subject knows,
logic allows us to reason about knowledge, one
of the fundamental concept of computer secu-
rity.
We are interested in our research in work-

flow databases which enforce the multilevel se-
curity policy. Lets designate by Level a fi-
nite set of security levels. The set Level is as-
sumed to be a lattice associated with a par-
tial order relation denoted by <. This di-
rectly implies that, the least upper bound and
greatest lower bound are determined. To de-
scribe that, we shall employ two functions lub
and glb. Assuming that l1 and l2 are two se-
curity levels, then lub (l1, l2) and glb (l1, l2) are
respectively the upper bound and greatest lower
bound of l1 and l2. There are also two dis-
tinctive levels, the one which is lower than all
other levels, designated by ⊥ and the other
level which is higher than all other levels, des-
ignated by �. We view the global multilevel

database as a set of partitions, where each par-
tition accomodates a single-level database as-
sociated with one particular security level. We
can formally represent this as follows. A mul-
tilevel database DB is represented by a set of
databases {DBi, i ∈ Level}. Every DBi is a
partition containing a finite set of propositional
formulae whose classifications are equal to i and
which are satisfiable but not necessarily com-
plete. We assume that the integrity constraints
are classified at level ⊥ because there is a sin-
gle set of integrity constraints which is common
to every single-level database DBi, i ∈ Level.
We wish to remove this restriction, therefore we
have to consider that we partition the global
set of integrity constraints into subsets Ii as-
sociated with each single-level database DBi.
For example, let us assume that the following
integrity constraint i1 is stored at the unclassi-
fied level:
• ∀x, ∀y, Emp(x) ∧ Earn(x, y) → y ≤

80, 000
i.e., an employee must not earn more than

$80,000.
However, let us assume that there are em-

ployees who can earn up to $99,000 but this
data must be kept secret. Inductively, we can
proclaim the following integrity constraint i2 at
the secret level:
• ∀x, ∀y, Emp(x) ∧ Earn(x, y) → y ≤

99, 000
However, two different sets of integrity con-

straints Ii and Ij may be conflicting, i.e. I∗i ∩
I∗j = Ø, therefore we might suggest using so
called 25) the trusted approach. We need to ob-
serve that data stored in each single-level work-
flow database generally corresponds to a par-
tial view of the universe by users at the corre-
sponding security level. This is induced from
our assumption that each single-level workflow
database DBl only contains data classified at
level l. Therefore, in the trusted approach, the
view at a given level l is obtained by merging
the single-level workflow database at level l with
all the lower single-level workflow databases.
For example, if a workflow database at level
lk−1 is consistent with a workflow database
at level lk, then DBlk−1 can completely flow
to level lk—as in the additive approach 25).
Lets describe, V iew at level l as the view of
the multilevel workflow database for users at
level l. Therefore, we can use the trusted ap-
proach to derive the set of integrity constraints

2982 IPSJ Journal Dec. 2001

Integrity at level lk which apply to the secu-
rity level lk:
• (Integrity at level l1)∗ = I∗l1• (Integrity at level lk)∗ =

I∗lk ✄ (Integrity at level lk−1)∗
To be realistic, we shall assume that the

global workflow multilevel database may be
polyinstantiated. We define this as follows: a
workflow multilevel database DB is polyinstan-
tiated if and only if there are two security levels
i and j such that DB∗

i ∩ DB∗
j = Ø.

Formally, a multilevel relation consists of two
parts: scheme and instances, defined below.
Definition 3. Relation Scheme Let A1, . . . , An

be data attribute names over domain Di, each
Ci is a classification attribute for Ai and TC
is the tuple-class attribute. The domain of Ci

is specified by a range [Li, Hi] which defined a
sub-lattice of access classes ranging from Li to
Hi. Let the domain of TC be the range
[lub☆{Li : i = 1, . . . , n}, lub{Hi : i =
1, . . . , n}].
Definition 4. Relation Instances Let
R(A1, C1, A2, C2, . . . , An, Cn, TC) be a
multilevel relation scheme. This collection of
state-dependent relation instances, one for each
access class c in the given lattice is designated
by Rc. Then each instance of a multilevel
relation is a set of distinct and ordered tuples
of the form (a1, c1, a2, c2, . . . , an, cn, tc) where
each ai ∈ Di or ai = null, and
tc = lub{ci : i = 1, . . . , n}. If ai �= ⊥ (null
value) then ci ∈ [Li, Hi]. We also require that
ci be defined even if ai is null - a classification
attribute cannot be null or more formally,
ci �=⊥ for ∀ ai.
Similarly to classical relations, multilevel

workflow relations are required to satisfy several
integrity properties. Since multilevel workflow
relations have different instances at different ac-
cess classes, the definition of keys becomes un-
clear because a relation instance is now a col-
lection of sets of tuples rather than a single set
of tuples.
5.3 The Necessity for Semantics in Se-

cure Workflow Databases
The problem of polyinstantiation arises be-

cause of different views of a single entity in
the real world at different security levels by
two subjects. Also the above problem gener-
ally occurs through the avoidance of a covert
channel. If for example a user inserts a rela-

☆ Least upper bound.

tion instance—tuple with key K1, a user from
a lower security level cannot be prevented from
inserting a different tuple with key K1 later
on, as rejecting the later insertion would open
a covert channel. As a direct result of this
operation, MLS workflow relations can con-
tain multiple tuples with the same key value—
polyinstantiated tuples. This problem has
been indicated in some previous models by
means of syntactic integrity properties, which
control the extent and nature of polyinstantia-
tion–e.g., Jajodia and Sandhu 20),21) and Jukic
and Vrbsky 14).
Our contention is that both these models of

asserting user beliefs about security are incom-
plete and somewhat stringent.
The Jukic-Vrbsky model is too restrictive and

has only fixed interpretations. On the other
hnd, the Jajodia-Sandhu model is too basic
where users are left to discover the truth. Users
in these frameworks really do not have any rea-
soning capabilities as the interpretations are al-
ready given.
The paucity of attempts aimed at develop-

ing a logical characterisation for MLS models
shows that MLS workflow deductive databases
are really at their embryonic state. While there
were proposals such as Ref. 19) that addressed
the general issue of authorisation in a deductive
framework, only Cuppens addressed the issue of
querying MLS deductive databases 23). We be-
lieve a middle ground is warranted where the
user is given the choice to reason and theorise
about the beliefs of others and decide how he
wants to believe information which is visible to
him. To support that approach, we assert that
users should be given linguistic tools to view
data as well as to construct meaning of the vis-
ible data. In such an environment, the user
may take a firm view of the data and insist that
whatever is created at his security level only are
correct and believable data. Thus lower level
data are of no value.
5.4 Inference Control Theorems of

MLS Workflow Database
We argue that any proposed model of MLS

worckflow database, under either discretionary
or mandatory security, should incorporate at
least the following elements:
• A formally defined model of the MLS

including all the security propeties that
databases under this model will possess.

• Classification of any piece of information at
any given classification level, should be en-

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2983

forced by powerful inference control rules.
• A formal definition—semantics for data-

bases under the proposed model, which can
represent the beliefs about the state of the
world held by the users at a chosen security
level.

The axiomatics of the language L, which we
consider is based on classical axiom schemas of
first order logic with equality, augmented with
appropriate axioms of our theory related to the
multilevel workflow object-relational database.
The subset of our language L is universally con-
sistent with any language based on first order
logic with equality 23). What follows is a set
of some axioms, which are relevant to a set of
integrity constraints to be enforced by the mul-
tilevel workflow object-relational database:
• If a is an attribute of the object o then o is

an object.
∀a∀o, OA(o, a) → Object(o) (A)

• If m is a method of the class c then c is a
class.
∀m∀c,Method(c,m) → Class(c) (B)

• If a is an attribute of the class c then c is a
class.
∀a∀c, CA(c, a) → Class(c) (C)

• Any object attribute has a value.
∀a∀o, OA(o, a) ↔ ∃v, V al(o, a, v) (D)

• The value of an object attribute is unique.
∀a∀o∀v∀v′ , V al(o, a, v) ∧ V al(o, a, v′) →
(v = v′) (E)

• Any object is instance of at least one class.
∀o, Object(o) → ∃c, Instance(o, c) (F)

• If o is an instance of c then o is an object
and c is a class.
∀o∀c, Instance(o, c)→ Object(o)
∧ Class(c) (G)

In this section we also present the general
constraints that should be enforced when clas-
sifying the workflow database content. Those
constraints must be satisfied when classifying
Class − c, containing objects o and attributes
a at level l and Class(c) at level l̂. The lan-
guage that we propose to represent the multi-
level workflow database is an extension of the
above defined language combined with the ac-
claimed Datalog language which is also aug-
mented with the predicates of the Logic Data
Language—LDL, resulting in a powerful com-
bination of the expressive power of a high-level,
logic-based language (such as Prolog) with the
non-navigational style of relational query lan-
guage, where the system is expected to devise

an efficient execution strategy for it. For each
predicate P of an arbitrary n used to represent
the non-protected workflow database content,
there is a predicate P̂ of arity (n + 1) used to
represent the MLS workflow database.
It is generally acknowledged that when clas-

sifying any piece of information at a given level,
the following inference control rule must be ac-
tive:
Definition 5. Rule - 1 Let x1, . . . , xn be
tuples of variables consecutively compatible
with the arity of predicates P1, . . . , Pn. Let y
be another tuple of variables compatible with
the arity of Q. For simplicity we assume that
each variable in tuple y appears in at least one
of the tuples x1, . . . , xn. therefore if:

∀x1, . . . ,∀xn, P1(x1)∧, . . . ,∧Pn(xn) → Q(y)

is an axiom of the non-secure object oriented
database, then by following the similar
approach as in23), we can derive the following
theorem in relation to the multilevel workflow
object oriented database:

∀x1 . . . ∀xn ∀ l1 . . . ∀ ln ∀ l, P̂1(x1, l1) ∧ . . .
∧ P̂n(xn, ln) ∧ Q̂ (y, l) → l ≤ lub(l1, l2, . . . , ln)

If the above rule 1 is not complied with, then
a subject cleared at level lub(l1, . . . , ln) can ac-
cess every Pi(xi) and use the above defined ax-
iom to derive Q(y). On the other hand if the
classification of Q(y) is not lower or equal to
lub(l1, . . . , ln), then an inference passage en-
abling prohibited information to be disclosed is
opend. By combining the above derived rule 1
with some more axiomatic of our language, we
can derive more useful theorems☆.
For example by combining rule - 1 with axiom

(D), we can derive the following theorem:
• ∀a ∀o ∀v ∀l ∀′l ,Val’(o,a,v,l)∧ OA′(o, a, l′) → (l′) (H)
Which can be described as follows: the sen-

sitivity of “v is a value of the attribute a in
object o” dominates the sensitivity of “a is an
attribute of object o”.
This model includes the possibility to hide

some parts of the multilevel workflow database
schema and to deal with rules in the database.
Therefore, it may also be used as a for-
mal semantics for multilevel workflow deductive
databases.

☆ Detailed demonstration on how similar theorems
can be established can be found in Ref. 25)

2984 IPSJ Journal Dec. 2001

When classifying any data of information at a
given sensitivity level 24), the following control
rule must be operational if one wants to protect
the existence of secure information:
Definition 6. Rule - 2 Let x1, . . . , xn and
y1, . . . , yp be tuples of variables consecutively
compatible with the arity of predicates
P1, . . . , Pn and Q1, . . . , Qp and let y be
another tuple of variables. For simplicity we
assume that each variable in tuple y appears in
at least one of the tuples y1, . . . , yp and each
variable in tuples y1, . . . yp appears in at least
one of the tuples x1, . . . xn, y. If:
• ∀ x1 . . . ∀ xn, P1(x1) ∧ . . . ∧ Pn(xn) → ∃

y,
Q(y1) ∧ . . . ∧ Q(yp) (L)

is an axiom of the non–protected workflow
object–relational database, then, the following
theorem can be derived related to the workflow
multilevel object–relational database:
• ∀ x1 . . . ∀ xn ∀ l1 . . . ∀ ln, P ′

1 (x1, l1)
∧ . . . ∧ P ′

n(xn, ln) → ∃ y ∃ l′1 . . . ∃ l′p,
Q′(y1, l

′
1)

∧ . . . ∧ Q′(yp, l
′
p) ∧ lub(l′1, . . . , l′p)

lub(l1, . . . , ln) (M)
In case, when Rule - 2 is not satisfied, then a

subject cleared at level lub(l1, . . . , ln) can ac-
cess every Pi(xi) and use the axiom (L) to
derive the existence of the secure data (facts)
Q(y1), . . . , Q(yp) some of them being classified
higher than lub(l1, . . . , ln). As the result, ef-
fectively a signaling channel is created, which
enables the existence of prohibited information
within the workflow repository to be disclosed.

6. The System Model

We will very concisely review the fundmen-
tal concepts of multilevel security and multiver-
sion serialisability theory. We refer the reader
to Refs. 1) and 2) for more details related to
the security model and to Ref. 28) for addi-
tional details relevant to multiversion serialis-
ability. A different approach to the problem of
devising secure concurrency control techniques
is to adopt less restrictive correctness criteria
than the ordinarily acknowledged one-copy seri-
alisability 29). It has been recognised for some
time, that traditional models of concurrency
and transactions are too restrictive for many
different applications. In particular some diffi-
culties arise for integrity constraints involving
data at different security levels 30). As a di-
rect result of this situation, different correct-
ness criteria weaker than one-copy serialisabil-

ity can be used for many transactions. Mod-
ern, concurrency control algorithm in Trusted
Oracle uses a combination of two-phase lockig
and timestamping for secure concurrency con-
trol that generate histories which are not one-
copy serialisable. To concur with Ref. 31) we
consider any multilevel secure system as con-
sisting of a set D of data items, a set T of trans-
actions (streams) which manipulate these data
items and lattice S of security levels, called the
security lattice, whose elements are ordered by
the dominance relation �. If two security lev-
els si and sj are ordered in the lattice such that
si � sj , then sj dominates si. A security level
si is said to be strictly dominated by a security
level sj , designated as si ≺ sj , if si � sj and i
�= j. Each data item from the set D and every
transaction from the set T is assigned a fixed
security level. The following two conditions are
necessary for a system to be secure:
• Transaction Ti is not allowed to read data

element x � L(Ti).
• Transaction Ti is not allowed to write a

data element x unless L(x) = L(Ti).
The above two restrictions must be augmented
with the guard against illegal information flows
through signaling and covert channels for the
system to be secure.
As we already stated before generally our ap-

proacch to security policy is based on the Bell-
LaPadula model 27).
Now we present our relaxed form of correct-

ness criterion, called level-wise serialisability.
We refer the reader to1),31) for additional details
related to the security model and for details rel-
evant to multiversion serialisability. It can be
used under those circumstances where integrity
constraints are independent among data at var-
ious access classes.
Definition 7. Level-wise serializability We say
a multiversion history H over T is level-wise
serialisable if:
• For each level s ∈ S, the subhistory Hs of

H is one-copy serializable.
• Let Ti be a transaction with L(Ti) = s,

and let s
′ ≺ s. Then the subhistory HT ′

where T
′
= {Ti ∈ T : L(Ti) = s

′} ∪
Rs′(Ti) is one-copy serialisable.

The prevalent idea of level-wise serialisability
is relevant to the notions of fragmentwise seri-
alisability introduced by Garcia-Molina and Ko-
gan 32). The above first requireents of level-wise
serialisability states that if we consider only

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2985

those transactions which are executing at a sin-
gle level, then the concurrent execution involv-
ing these transactions is one-copy serialisable.
The second requirement promise that whenever
a high transaction reads data at a lower level,
it only sees a consistent copy of the low data.
The concurrency control algorithm that has

been implemented in Trusted Oracle 33), guar-
antees level-wise serialisability. It is secure and
does not require a trusted scheduler. It is com-
posed of the following steps:
(1) There is separate scheduler at each secu-

rity level s.
(2) There is a shared, monotonically increas-

ing hardware clock at system low that is
guaranteed to return a new value every
time it is read. This clock is used to as-
sign a unique timestamp to each transac-
tion Ti, denoted by ts(Ti). Each Ti is also
assigned a commit timestamp, cts(Ti),
when Ti reaches its commit point.

(3) If Ti is a read-only transaction at level s
and wishes to read an item x at level s

′

such that s � s
′
, then step 7 is executed.

(4) If Ti is a read-write transaction at level
s, the following steps are performed.

(5) At each security level s, strict two-phase
locking is used for concurrency control.
However, when Ti writes an item x,
it creates a new version xi. A write
timestamp wt(xi) is assigned to xi which
equals the commit timestamp of Ti.

(6) When a transaction Ti at level s wishes
to read an item x at level s

′
such that

s � s
′
, step 7 is executed.

(7) The timestamp ts(Ti) is used to select
the appropriate version of x. The ver-
sion selected is xk with the largest wt(xk)
such that wt(xk) ≺ ts(Ti).

Thus, the above stated Trusted Oracle DBMS
fully supports transactional workflow securiy
requirements.

7. Implementation of the Secure Dis-
tributed Workflows

The architecture of our multilevel secure
workflow transaction processing system can be
divided into a trusted, an untrusted, and a re-
ceptive module as shown in Fig. 4.
The trusted component consists of two func-

tioning modules: Trusted Lock Manager and
Trusted File Manager. The untrusted compo-
nent is a collection of Transaction Managers

(TMs), one for each security level. The recep-
tive component is the Workflow Database - its
File Store component, which may be physically
partitioned according to the security levels.
Figure 4 shows the interfaces between the dif-

ferent components of our implementation. Ex-
cept for the native interface between the RMs
and the Workflow Database, all interfaces are
defined as an API in the X/Open standard:
• TX interface (WD ⇔ TM): With this in-

terface an application can demarcate the
begin and the end of a transaction to the
TM 34).

• XA interface (TM ⇔ RM): The TM co-
ordinates the begin, the suspending and
the commit protocol of a transaction to
the registred RM in a domains - computer
nodes 35).

• XA+ interface (TM ⇔ CRM): With these
functions the TMs can communicate via
the CRMs in a distributed transaction be-
tween different domains 36).

• TxRPC IDL (AP ⇔ CRM): The
TxRPC 37) is based on the DCE RPC 38),
which can use some other DCE services
like the name service for the localisation of
servers. The DCE interface definition lan-
guage (IDL) is able o support the TxRPC.
The CRMs communicate with each other
via the OSI TP protocol.

The major advantage of this implementation is
the standardisation of the interfaces. Due to
the modular concept, all components and ap-
plications can be easily extended and replaced.
So cooperation between components of differ-
ent vendors is possible. In our sample environ-
ment the transaction monitors TUXEDO (Nov-
ell) and Encina (Transarc) can be involved in
a single transaction and can even talk to each
other via a CRM of a different vendor. The
model supports changes in the configuration at
runtime because the RM and CRM can also
register dynamically at the TM. Multiple trans-
actions initiated by different workflows applica-
tions are distinguished by the thread of control
(ToC). It is a structure defined in the X/Open
model and must be distinguished by the thread-
ID or process-ID in the sense of POSIX. The
TM manages the sequence of transactions by
suspending them and resuming them at a later
time.
Note that in order to accomodate relevant

commercially available DBMS to support our
approach, the assumption about Lock Manager

2986 IPSJ Journal Dec. 2001

Fig. 4 The MLS distributed workflow architecture.

being trusted can be relaxed by providing one
Lock Manager for each security level. If that
particular option is taken, a Trojan Horse in-
side some untrusted Lock Manager can compro-
mise the correct execution of Concurrent work-
flow transactions, but cannot violate security.
Additionally, as the whole body of a standard
Lock Manager, written with all the requisite de-
fensive programming, exception habdlers, op-
timizations, deadlock detectors, etc. comes to

about a thousand a thousand lines of actual
code, it is easily verifiable. Thus our assump-
tion of a Trusted Lock Manager, which jeopar-
dises neither security nor integrity, is justified.
Composing an MLS workflow from multiple

single-level workflows is the only practical way
to construct a high-assurance MLS WFMS to-
day. In this approach, the multilevel security of
our MLS workflow does not depend on single-
level WFMS but rather on the underlying MLS

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2987

distributed architecture. A transaction Tk at
the security level si can read information stored
at level si only if sj � si, and can write infor-
mation only at level si

31). The corresponding
TMi at the level si controls the concurret ex-
ecution and recovery of those—and only those
transactions that are at level si, therefore TMi

can be untrusted component of the architec-
ture. In a multilevel secure workflow, tasks may
belong to different security levels. Thus ensur-
ing all the task dependencies, especially those
from a task at a higher security level to that at
a lower security level, may compromise security.
This implies that it is important to understand
that in a multilevel environment it is not possi-
ble to force the abort of a lower level task upon
the abort of a higher level task.
The workflow Static Integrator and Dis-

patcher module examines the structure of work-
flow dependencies which also includes security
levels of tasks and alters the workflows ac-
cordingly. Integration is done statically, there-
fore the Integrator and Dispatcher need not be
trusted. As it is supported by our architecture,
while the WFMS layer enforces all the depen-
dencies existing among the various tasks in a
workflow by submitting the tasks to the appro-
priate DBMS in a coordinated manner, the cor-
responding DBMS simply executes their respec-
tive tasks and sends the responses back to the
WFMS. Similar implementations can be found
in the context of extended transaction models,
for example the reflective transaction framework
in Ref. 39), etc.
Recall that, in a parallel workflow control ar-

chitecture, the state of an individual workflow
is on a single node while the global state is dis-
tributed across nodes. Hence, the extended so-
lutions require an additional message passing
the state and event information across nodes.
Distributed workflow control requires an addi-
tional message since the state of an individual
workflow is distributed across nodes. Our envi-
ronment consists of a heterogeneous collection
of nodes as shown in Fig. 4. Any of these nodes
can act as agents or engines in central, parallel
or distributed control architectures. Hence to
achieve total portability across heterogeneous
architectures, the workflow compiler and the
architecture’s run-time environment have been
partially implemented using the Java program-
ming language and it’s development tools. One
of the essential functions of the MLS workflow

compiler is to divide an MLS workflow into
multiple single-level workflows. These multiple
single-level workflows will be executed on the
underlying MLS distributed architecture that is
dipicted on Fig. 4. The workflow run-time en-
vironment has to manage several workflow in-
stances concurrently. Also, workflow instances
may have two or more steps from concurrent
branches executing simultaneously. These re-
quirements have been efficiently achieved in the
present run-time environment using the multi-
threading facility available in Java. The pro-
totype system is client-server oriented. The
backend server features a set of transactional
activity management primitives, and is built
on Transarc’s transaction processing TP moni-
tor Encina. The frontend features several web-
friendly graphical user interfaces for activity
control and administration at both specification
and instance levels, and is built with a mixed
use of Java applets, JavaScript, and HTML for
portability and reusability. Our WFMS utilises
a simple model DBMS from which workflows
may be selected for execution. Workflows or
components of workflows may be added to the
model repository by specifying them in a work-
flow language. WFSL/TSL may be used to spec-
ify workflows 40). The WorkFlow Specification
Language—WFSL is a declarative rule-based
language to describe the conceptual workflow
specification, while the Task Specification Lan-
guage TSL 40) is a language to specify simple
tasks that run in our workflow systems envi-
ronment. Once a workflow is selected from the
repository, several steps are carried out that in-
stantiate a workflow instance that is able to run
within our execution environment.

8. Evaluating the Quantitative Effects
of the Workflow System

We performed some experiments with the
prototype in order to demonstrate the dif-
ference in operational efficiency between two
methods. Experiments span between two ge-
ographically separated branches of the business
enterprise. The experiment was carried out by
the members of those two branches who usually
are engaged by those operations as a normal
part of their work duties. We calculated the
average of several independent experiments in
order to establish a more objective experimen-
tal environment. During the first experiment
we measured the time needed to complete the
whole operational cycle according to the busi-

2988 IPSJ Journal Dec. 2001

Fig. 5 The evaluated business process.

ness process being described by Fig. 5.
This experiment was performed by following

the usual manual disconnected operation be-
tween the two physically separate business es-
tablishments. In this case each branch manages
the internal workflow individually. Interopera-
tion between organisational units is only sup-
ported by an E-mail system.
During the second set of experiments the

business process depicted on Fig. 5 was car-
ried out by the workflow engines interoperat-
ing with each other. Document exchange across
the organisations is performed automatically by
a messaging function supported by the proto-
col used by the workflow engines. All accom-
panying transactional activities were also sup-
ported in that way by the supporting work-
flow environment. The average values related
to the execution time of the business process de-
picted on Fig. 5, namely: Manufacturing, Ware-
housing & Storage, Sales—City Distributor and
Sales—Country Distributor. Note, that cal-
culated time reflex only values related to the
movement of business data within the system
under investigation. In particular, it does not
include the time consumed by various support-
ing activities being a part of miscelanous ap-
proval activities.
The results of those experiments show us (see

Fig. 6) that savings in time amounts to about
59% in case of using interworkflow environ-
ment to support the business processes. From
these experiments, we can draw the conclusion,
that by deploying workflow operational envi-
ronment, substantial amounts of time can be
saved while supporting the busines operations.

9. Conclusions

Well-structured process management has be-
come an ingredient to modern information man-

Fig. 6 Execution time of manual and workflow
methods.

agement as essential as data management. Con-
sequently, workflow management systems have
entered the arena of business computing as
the cornerstone for business process or work-
flow management. The impetus for our cur-
rent research is the need to provide an adequate
framework for belief reasoning about security
in MLS distributed workflow management sys-
tems. The notions of correctness for transac-
tion processing that are usually proposed for
multiuser databases are not necessarily suitable
when these databases are parts of a multilevel
secure workflow systems. We believe, that the
best approach will depend upon the character-
istics of the multilevel secure workflow and the
applications. It is incumbent upon those who
develop multilevel secure workflow systems to

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2989

ensure that the user’s needs and expectations
are met to avoid misunderstandings about the
system’s functionality.
The insight developed in the current research

serves as the basis for a complete logical syn-
thesis of SecureLog, the language which we are
currently developing as an orthogonal extension
of the work contained in this paper in the di-
rection of F-logic 26).
We chose to develop a formal framework for

a secure distributed workflow architecture since
interworkflow is anticipated as a major support-
ing mechanism for Business-to-Business Elec-
tronic Commerce. We strive to develop a prac-
tical logical characterisation of MLS distributed
workflow for the first time using the inherently
difficult concept of non-monotonic reasoning.
We also derived a general theorem which must
be active when classifying every item of infor-
mation.
Acknowledgments We wish to acknowl-

edge the anonymous referees for their helpful
comments, which led us to an improved presen-
tation of this paper. A preliminary version of
this paper appeared under the title “A Strat-
egy for MLS Workflow”, in Proceedings of The
Sixth ACISP International Conference on In-
formation Security and Privacy, Sydney, July
2001.

References

1) Wietrzyk,V., Takizawa,M. andVaradharajan,
V.: A Strategy for MLS Workflow, Information
Security and Privacy in Proc. 6th International
Conference, ACISP 2001, Sydney (July 2001).

2) Wietrzyk, V., Takizawa, M., Orgun, M.A.
and Varadharajan, V.: A Secure Environment
for Workflows in Distributed Systems, Paral-
lel and Distributed Systems in Proc. 8th Inter-
national Conference, ICPADS 2001, KyongJu
City (June 2001).

3) Wietrzyk, V. and Orgun, M.A.: A Foundation
for High Performance Object Database Sys-
tems, Databases for the Millennium 2000 in
Proc. 9th International Conference on Manage-
ment of Data, Hyderabad (Dec. 1998).

4) Elmagarmid, A.: Transaction Models for
Advanced Database Applications, Morgan-
Kaufmann (Feb. 1992).

5) Grefen, G., Pernici, B. and Sanchez, G.:
Database Support for Workflow Management
— The WIDE Project, Kluwer Academic Pub-
lishers (Aug. 1999).

6) Rusinkiewicz, M. and Sheth, A.: On trans-
actional Workflows, Bulletin of the Technical

Committee on Data Engineering (June 1993).
7) The Workflow Management Coalition Interop-

erability Abstract Specification, The Workflow
Management Coalition (June 1996).

8) Alonso, G. and Agrawal, D.: Advanced trans-
action Models in Workflow Contexts, Proc. Int.
Conf. on Data Engineering (1996).

9) Georgakopoulos, D., Hornick, M. and Sheth,
A.: An Overview of Workflow Management:
From Process Modeling to Workflow Automa-
tion Infrastructure, Distributed and Parallel
Databases, Vol.3, No.2, pp.119–153 (1999).

10) Elmagarmid, A.K., Leu, Y., Litwin, W. and
Rusinkiewicz, M.E.: A Multidatabase Model
for Interbase, Proc. 16th VLDB Conference
(Aug. 1990).

11) Gligor, V. and Popescu-Zeletin, R.: Trans-
action Management in Distributed Heteroge-
neous Database Management Systems, Infor-
mation Systems, Vol.11, No.4 (1986).

12) Zhang, A., Nodine, M., Bhargava, B. and
Bukhres, O.: Scheduling with Compensation
in Multidatabase Systems, CSD-TR-93-063,
Vol.11, No.4 (1993).

13) Ansari, M., Rusinkiewicz, M., Ness, L. and
Sheth, A.: Executing Multidatabase Systems,
TM-TSV-019450 (1991).

14) Jukic, N.A. and Vrbsky, S.V.: Asserting be-
liefs in mls relational models, Sigmod Record,
Ithaca, NY, pp.30–35, ACM Press (1997).

15) Department of Defense, National Com-
puter Security Center: Department of Defense
Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD (1985).

16) Bell, D.E. and LaPadula, L.J.: Secure Com-
puter Systems: Mathematical Foundations and
Model, Technical Report, MITRE Corporation
(1974).

17) Denning, D., Lunt, T., Heckman, R. and
Shockley, W.: A Multilevel relational data
Model, Proc. IEEE Symposium on research in
Security and Privacy, Oakland, April, pp.220–
234, IEEE, New York (1987).

18) Lunt, T.: Multilevel Security for Object-
Oriented Databases. Spooner, D.L. and
Landwehr, C. (Eds.), Database Security,
III, pp.199–209, Amsterdam, North-Holland
(1990).

19) Candan, K.S., Jajodia, S. and Subrahmanian,
V.S.: Secure Mediated Databases, Proc. ICDE,
pp.35–55 (1996).

20) Jajodia, S. and Sandhu, R.: Toward a Multi-
level Secure Data Model, Proc.ACM SIGMOD,
Denver, Colo., May, pp.50–59, ACM, New York
(1991).

21) Jajodia, S. and Sandhu, R.: Polyinstantiation
Integrity in Multilevel Relations, Proc. IEEE

2990 IPSJ Journal Dec. 2001

Symposium on Research in Security and Pri-
vacy, Oakland, May, pp.104–115, IEEE, New
York (1990).

22) Winslett, M. and Smith, K.: Entity Modeling
in the MLS Relational Model, Proc. 18th In-
ternational Conference on VLDB, pp.199–210,
VLDB Endowment (1992).

23) Cuppens, F.: Querying a Multilevel Database:
a logical Analysis, Proc. 22nd VLDB Confer-
ence, VLDB Endowment (1996).

24) Boulahia-Cuppens, N., Cuppens, F., Gabillon,
A. and Yazdanian, K.: Decomposition of Multi-
level Objects in an Object-Oriented Database,
Proc.European Symposium on research in com-
puter security, Brighton, UK, Springer Verlag
(1994).

25) Gabillon, A.: Sécurité Multi-Niveaux dans les
Bases de Données à Objects, ENSAE (1995).

26) Kifer, M., Lausen, G. and Wu, J.: Logical
Foundations for Object-Oriented and Frame-
Based Languages, Journal of the Association of
Computing Machinery, Vol.42, No.3, pp.741–
843 (1995).

27) Bell, D.E. and LaPadula, L.J.: Concurrency
Control and Recovery in Database Systems,
Addison-Wesley, Reading, Mass. (1987).

28) Bernstein, P.A., Hadzilacos, V. and Goodman,
N.: Decomposition of Multilevel Objects in
an Object-Oriented Database, Proc. European
Symposium on research in computer security,
Brighton, UK, Springer Verlag (1994).

29) Kogan, B. and Jajodia, S.: Secure Concur-
rency Control, Proc. Third RADC Workshop
Multilevel Database Security, Castille, N.Y.
(June 1990).

30) Meadows, C. and Jajodia, S.: Integrity ver-
sus Security in Multilevel Secure Databases,
Database Security, Status and Prospects,
Landwehr, C.E. (Ed.), Amsterdam, North Hol-
land (1988).

31) Jajobia, S., Elisa, B. and Atluri, V.: 1SR-
Consistency: A New Notion of Correctness for
Multilevel Secure, Multiversion Database Man-
agement Systems, Proc. 19th Latin Am. Infor-
matics Conf., Buenos Aires, Argentina (Aug.
1999).

32) Garcia-Molina, H. and Kogan, B.: Achiev-
ing High Availability in Distributed Databases,
IEEE Trans. Softw. Eng., Vol.14, No.7 (1988).

33) Maimone, W.T. and Greenberg, I.B.: Single-
Level Multiversion Schedulers for Multilevel
Secure Database Systems, Proc. Sixth Ann.
Computer Security Applications Conf., Tucson,
Ariz. (Dec. 1990).

34) X/Open Ltd.: CAE Specification 1995: Dis-
tributed Transaction Processing, The TX
(Transaction Demarcation) Specification,

X/Open Company Ltd. (1995).
35) X/Open CAE Specification: Distributed

Transaction Processing, The XA Specification,
X/Open (1991).

36) X/Open Snapshot: Distributed Transaction
Processing, The XA+ Specification, X/Open,
1999, Version 2, X/Open Company Ltd.
(1999).

37) X/Open CAE Specification: Distributed
Transaction Processing, The TxRPC Specifica-
tion, X/Open (2000).

38) Schill, A.: DCE — Das OSF Distributed
Computing Environment, The DCE (Transac-
tion Demarcation) Specification, Verlag (2001),
ISBN 3-540-55335-5.

39) Barga, R. and Pu, C.: A Practical and Modu-
lar Method to Implement Extended transaction
Models, Proc. VLDB (1995).

40) Krishnakumar, N. and Sheth, A.: Manag-
ing heterogeneous multi-system tasks to sup-
port enterprise-wide operations, Distributed
and Parallel Databases, Vol.3, No.2 (1995).

(Received February 28, 2001)
(Accepted October 16, 2001)

Vol. 42 No. 12 A Framework for Secure Distributed Workflows 2991

Vlad Ingar Wietrzyk ob-
tained his M.Sc. degree from
Prague University. EU and his
Dip. in Computer Science from
UTS, Sydney. Since 1999 he
has been at the University of
Western Sydney. Since 1997 un-

til 1998 he had been a visiting researcher of
Stuttgart and Mannheim Universities. He has
publications in national and international con-
ferences and workshops. In 1999 he was a visit-
ing researcher at the Institute of Software Engi-
neering, Montreal University. He has served on
the program committees of international con-
ferences like ICPADS, IDEAS, CIT, COMAD,
ENTER. He has deliverd industrial seminars on
computing to companies like VERSANT and
ALCATEL. While at the Analytical Service
Corporation, Sydney 1987–1995 he designed
and implemented in software, a hierarchical
clustering method which was the first to sup-
port the analysis of data based on groups and
data exploration. His current research interests
are: Object Distributed Databases, Various as-
pects of Information Systems Design Method-
ologies (including Distributed Systems), Trans-
action Processing in distributed systems, Con-
currency Control, Distributed and Federated
Database Systems, and Distributed Workflow
Technology supporting Electronic Commerce.
He is a member of IEEE and AIEA.

Katsuya Tanaka was born
in 1971. He received his B.E.
and M.E. degree in Computers
and Systems Engineering from
Tokyo Denki University, Japan
in 1995 and 1997, respectively.
From 1997 to 1999, he worked

for NTT Data Corporation. Currently, he is an
assistant in the Department of Computers and
Systems Engineering, Tokyo Denki University.
He received the D.E. degree from Dept. of Com-
puters and Systems Engineering, Tokyo Denki
University, Japan, in 2000. His research in-
terests include distributed systems, transaction
management, recovery protocols, and computer
network protocols. He is a member of IEEE CS
and IPSJ.

Makoto Takizawa was born
in 1950. He received his B.E.
and M.E. degrees in Applied
Physics from Tohoku Univ.,
Japan, in 1973 and 1975, respec-
tively. He received his D.E. in
Computer Science from Tohoku

Univ. in 1983. From 1975 to 1986, he worked
for Japan Information Processing Developing
Center (JIPDEC) supported by the MITI. He
is currently a Professor of the Dept. of Com-
puters and Systems Engineering, Tokyo Denki
Univ. since 1986. From 1989 to 1990, he was a
visiting professor of the GMD-IPSI, Germany.
He is also a regular visiting professor of Keele
Univ., England since 1990. He was a program
co-char of IEEE ICDCS-18, 1998 and serves on
the program committees of many international
conferences. He chaired SIGDPS of IPSJ from
1997 to 1999. He is IPSJ fellow. His research in-
terests include communication protocols, group
communication, distributed database systems,
transaction management, and security. He is a
member of IEEE, ACM, and IPSJ.

