1080 TR 2 B 3 CR A B R) £ E A&

PROLOG

INTERFACE SYSTEM ON DISTRIBUTED

NAVIGATIONAL DATABASE SYSTEMS

3N-1

Motoshi KATSUMATA and Makoto TAKIZAWA
Tokyo Denki University

1. INTRODUCTION

Current information systems have included
various database systems interconnected by
communication networks. Database systems
provide different types of data models. In or-
der to provide users with easy access to the
distributed database system, a common inter-
face system has to be provided. In this paper,
we try to provide a common Prolog interface
through which users can access more than one
navigational database system. Navigational
database systems are not only the conventional
network database systems but also the file
systems like UNIX file system. Also, we
present how to execute them in parallel on the
distributed navigational database systems.

2. QUERIES
Next, we present the query form. We take two
databases DB1 and DB2 as an example.

DB1: s(@s, sname) p(@p, pname) b(eb, role)
DB2: sp(@sp,®@p,®s) pb(@pb,&b,ep) bp(&bp,eb,ep)
Fig.2.1 Databases

A view is defined on the database like this.
sp(SNAM,PNAM) :- s(S,SNAM),sp(P,S),p(P,PNAM).
The view "sp” means that a supplier SNAM sup-
plies parts PNAM. A query "find parts supplied

by a supplier a” is written like this.
query(PN) :- sp(”"a”, PN).

Here, PN is a target variable and "a” is a
constant.

3. TRANSLATION OF SIMPLE QUERIES TO NAVIGA-
TIONAL PROGRAMS
Now, we try to translate a simple query to a
program which accesses the database.
3.1 PREVENTION OF MEANINGLESS BACKTRACKINGS
query(Y,PP) :- p(P,Y), pb(B,P),

p(PP,X), b(B), bp(B,PP). —-(1)
A navigational program for a query (1) is com-
posed of nodes interconnected by one-way chan-
nels. Each node denotes an atom in query. Node
A is composed of an ordered set D(A), state
variable P(A), and two input ports, A.FS and
A.NX, and two output ports, A.SC and A.FL. ST
is a start node. OUT node outputs the answer.
In the Prolog program, for example, if (4)
fails, (4) sends a token from (4).FL to

PROLOG INTERFACE SYSTEM ON DISTRIBUTED
NAVIGATIONAL DATABASE SYSTEMS

Motoshi KATSUMATA, Makoto TAKIZAWA
Tokyo Denki University

(3).NX[Fig.3.1]. However, since substitution-
sobtained by (3) include no binding of the
variable B in (4), the backtracking from (4)
to (3) is meaningless. Navigational program by
SP is shown in Fig.3.1. SP prevents the mean-
ingless backtrackings [TAKI87a].

|

t ' + t

NXl FL! iNX , NX rFL lNX IFL FL
o Irsl, lrsion(®, [Fs[p . IFsTI;(ETFSI oSl |
1ST F3ab(B) PR 3% oo ‘

IsC| |sc| P) 5] Y)]SC] PP)ISCI Xsc]

o "o e e ©)

3.2 repuctiBicde ShbENAR Rsandy SP

Next, we try to get all the answer substitu-
tions without redundant refutations. Here, let
T be a navigational program. X and Y are some
nodes in T. If there exist a edge from X.FL to
Y.NX, let Y be parent(X). For a node A in T,
suppose that there are n nodes B, ...,B, where
A = parent(By) for j=1,...,n. Let T, be a sub-
tree of B,. Suppose that a substitution @a. is -
obtained by the resolution of A. Let Ans(B,) be
a set of refutations obtained from T;8 4 In
the Prolog program, for each A@,. a cartesian
product CAa= Ans(B,) x...x Ans(B.) is obtained.
Here, let Tw be a subtree which includes tar-
gets in Ty, ..., Ta (k=1,...,p, p<n). In our
method, only a projection of CAs on Twn,...,Th,
i.e. AAa= Ans(Bm) x...x Ans(B.) is accessed.
Since it is clear that [CAal > |AAal, we can
get all the answer substitutions in less ac-
cesses to the database than the Prolog
program. Here, we improved the backtracking
for getting all the answer substitutions and
introduced the new output ports LFL and RSC.
Our navigational program is shown in Fig.3.2.

t T

+
1 1]]
¥ FLE Fr;*_g L) FLE $(4) (5)iFL
®,[__[bp®,] [p®P, [
IST‘ sEJb(B)}'SE}: ;S).IFEEJFP)“§cJ ¥ ITSEJFP Y [set o

Fig.3.2 Navigational Progranm
[Proposition] For a given query Q, less tuples
are accessed and less number of redundant
answers are obtained by our navigational
program than the Prolog one.

1081

4. OR PARALLELISH

Next, we try to execute a query in parallel.
First, let us consider the following query.
query(T,U) :- A(X,Y), B(X,T), C(T), V(Y,U).
V(P,Q) :- D(P,Q,Z), E(Z).

V(P,Q) :- F(P,V,Z), G(V,Q), H(Z).

The views in the query are replaced by the
right hand side of the views. For example, the
following two queries are obtained.
~query1(T,U) :- A(X,Y), B(X,T), C(T),

D(Y,U,Z), E(Z).
- AXY), B(X,T), C(T),
F(Y,V,Z), G(V,U), H(Z).

One method to get the answers of query is to
take the union of two results obtained by
queryl and query2. However, in both queries,
A, B, C are commonly evaluated. D,E in queryl
and F,G,H in query2 can be executed in paral-
lel. We try to reduce this redundant process-
ing and execute them in parallel. So we intro-
duce an object named OR for controlling this
case to the access program. When constructing
a navigational program for a given query, if a
rule atom A is selected for some parent node
P, an OR node is created as a child of P.
Navigational program for a given query is
shown in Fig.4.1. Here, node D,E and F,G,H are

executed in parallel.
} y

RRRERK &&0)
SRRSO i |
gﬁ»{ ¢ [I—> if->Jour|
[# T
REEREREREREREE
Fig.4.1 Navigational Program

There are two kinds of OR objects. i.e. all-
wait (AW0) and one-wait(OW0) OR objects. Sup-
pose that the subsequences at the right hand
side of an OR node 0 do not include any target
node. If one of the subsequence S; is found to
success, we do not have to wait for the
completion of all the other subsequences at
the OR node 0. This type of OR node is named a
OW0 node. Om the other hand, let us consider
that the subsequences of the OR node 0 include
some target node. It is clear that of some
subsequence includes target node, all of the
subsequences of 0 includes target node. In
this case, even if all the answer substitu-
tions are obtained from one subsequence of O,
we cannot stop to wait for the other sub-
sequences. When all the refutations for all
the subsequences complete, we can backtrack to
the ancestor node of 0. This type of the OR
node is named AWO node. OR parallelism is
achieved without making intermediate files.

query2(T,U)

XkkkRRRREkERRk

5. IMPLEMENTATION

Qur distributed database system is composed of
one mainframe m380, a super mini-computer
a400, and five Sun workstations which are in-
terconnected by Ethernet. As the database sys-
tems, m380 provides INGRES, and a400 and Suns
provide UNIFY, and all of them provide UNIX
file systems and indexed file system C-tree.
Navigational objects are implemented for rela-
tions and files by using C language.

q;Prolog g:Prolog
1P {<-2->{1B80 1P {<z> -?”’B
e .
FB IP: Inference
1NGRES TNiFy FB: Fact Base
& Ethernet U

Fig.5.1 System construction

Objects communicate with another objects
through the datagram socket, i.e. UDP provided
by Unix. When a Prolog query § is accepted, an
access program T is created. For each node A,
an object instance is created by issuing
creatOBJ(A) to the object type. After all the
object instances are created, addresses of ob-
jects, which correspond to the directed edges,
are sent to them. By making the ST instance
send a token, the parallel execution of the
access program is started. When the ST in-
stance terminates, the program terminates.

6. CONCLUDING REMARKS

In this paper, we have presented a Prolog-like
query language interface on the multiple
various navigational database systems like the
conventional network database systems and Unix
file systems. In our system, derivation of the
redundant answers are prevented by accessing
navigationally the database without making in-
termediate files. Also, we have shown the
method to realize the OR parallelism so as to
decrease the redundant answer substitutions.

REFERENCES

[TAK187a)] Takizawa,M., "Deductive Network
Database System,”(in Japanese), Journal of
JSAL, Vol.2, No.2, 1987, pp.182-191.

[TAKI87b] Takizawa, M., et al., "Logic Inter-
face System on Navigational Database System,”
Lecture Notes in Computer Science, Springer-
Verlag, No.264, 1987, pp.70-80.

[TAKI88] Takizawa, M., "Transaction Management
by Prolog,” Lecture Notes in Computer Science,
Springer-Verlag, 1988.

[WARR]Warren, D. H. D., "Efficient Processing
of Interactive Relational Database Queries
Expressed in Logic,” Proc. of the VLDB, 1981,
pp.272-281.

